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Any physical system evolves at a finite speed that is constrained not only by the energetic cost but also
by the topological structure of the underlying dynamics. In this Letter, by considering such structural
information, we derive a unified topological speed limit for the evolution of physical states using an optimal
transport approach. We prove that the minimum time required for changing states is lower bounded by the
discrete Wasserstein distance, which encodes the topological information of the system, and the time-
averaged velocity. The bound obtained is tight and applicable to a wide range of dynamics, from
deterministic to stochastic, and classical to quantum systems. In addition, the bound provides insight into
the design principles of the optimal process that attains the maximum speed. We demonstrate the
application of our results to chemical reaction networks and interacting many-body quantum systems.
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Introduction.—Investigating how fast a system can
evolve is one of the central problems in classical and
quantum mechanics. In a seminal work by Mandelstam and
Tamm [1], a fundamental bound on the operational time
required for the transformation between two orthogonal
states for unitary dynamics was derived. Since then,
generalizations of the bound for arbitrary states and non-
unitary dynamics have been intensively studied [2–36],
leading to the notion of speed limits (see Ref. [37] for a
review). These speed limits establish the ultimate rate at
which a system can evolve to a distinguishable state and
have found diverse applications, for example, in quantum
control [38–41], quantum metrology [42,43], and thermo-
dynamics of computation [33,44–49].
Interacting systems generally form topological structures

in their dynamics, such as chemical reaction networks that
consist of several species (see the schematic in Fig. 1). In
general, a state represented by a vector xt evolves over time
and is significantly affected by the topology of the
dynamics. For instance, a Markov jump process with dense
connectivity may relax toward an equilibrium state faster
than one with sparse connectivity. A many-body system
with long-range interactions can change quantum states
faster than one with short-range interactions [50]. Although
speed limits for state transformations have been intensively
investigated, the topological nature arising from the net-
work structure in the dynamics has not been fully
accounted for. Note that conventional speed limits, which
read as τ ≥ Lðx0; xτÞ=v̄, employed nontopological metrics
L, such as the Bures angle, trace norm, quantum Fisher
information, etc., to quantify the distance between the
initial and final states [37]. These metrics are always upper
bounded by a constant that does not scale with the size of
the system, whereas the dynamics strongly depends on the
system size. Velocity v̄ is determined by the entire

dynamics of the system [51], and hence it is generally
of the order of system size. Consequently, conventional
speed limits become trivial (i.e., τ ≥ Lðx0; xτÞ=v̄ → 0) as
the system increases in terms of size [52]. This indicates
that in order to derive meaningful bounds, metrics that
capture the topological nature and are scalable with system
size should be considered.
In this Letter, we derive a speed limit for arbitrary states

xt using a topological metric defined through the network
structure in the dynamics. The time evolution of such states
is described by a graph in which each vertex exchanges
flows with each other and may be pumped by an external
flow. Examples include the probability distribution of
discrete systems, mass concentrations in chemical reaction
networks, and vectors of observables in quantum systems
(see Fig. 1 again for illustration). We employ a generalized
version of the discrete Wasserstein distance to quantify the

(a) (b)

FIG. 1. (a) Generic time evolution of a physical state xt ¼
½x1ðtÞ;…; xNðtÞ�⊤ on a graph. xiðtÞ is evolved because of the
flows ffijðtÞg exchanged between neighboring vertices and an
external flow fiðtÞ. (b) Examples include reactant concentrations
in deterministic chemical reactions and boson numbers in
interacting bosonic systems.
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distance between the states. This distance, widely used in
optimal transport theory [53], encodes topological infor-
mation and can grow proportional to the size of the system.
We prove that the minimum operational time required to
change the physical state is lower bounded by the
Wasserstein distance divided by the average velocity
[cf. Eqs. (5) and (6)]. The obtained speed limit is tight
and can be saturated, even when the system size increases.
Moreover, it is applicable to a broad range of dynamics
ranging from deterministic and stochastic classical systems
to isolated and open quantum systems. For example, we
apply the theory to chemical reaction networks using the
Wasserstein distance applicable to any reversible chemical
reaction and provide a reaction speed formula that can
discriminate between different chemical reactions [54].
Another important application is the interacting bosonic
transport for arbitrary initial (mixed) states with and
without a thermal environment, which is relevant to the
Lieb–Robinson velocity [56]. Through the examples, we
demonstrate that considering topological metrics does not
only provide quantitatively tight bounds but also qualita-
tively reveals the physical mechanism of state transforma-
tions, which cannot be obtained with speed limits reported
thus far.
General setup.—We consider a time-dependent vector

state xt ≔ ½x1ðtÞ;…; xNðtÞ�⊤ and an undirected graph
GðV; EÞ with the vertex set V ¼ f1;…; Ng and edge set
E. Each element xiðtÞ corresponds to a vertex i ∈ V. For
example, xt can be a vector of the probability distribution of
a discrete system, reactant concentrations of chemical
reaction networks, or physical observables in classical
and quantum systems (examples are provided later). For
each vertex i, let Bi ≔ fjjhi; ji ∈ Eg denote the set of
neighboring vertices of i. We assume that the time
evolution of xt is given by the following deterministic
equation [see Fig. 1(a)]:

_xiðtÞ ¼ fiðtÞ þ
X
j∈Bi

fijðtÞ; ð1Þ

where fijðtÞ ¼ −fjiðtÞ denotes the flow exchange between
vertices i and j for i ≠ j and fiðtÞ is an arbitrary external
flow. In the absence of external flows [i.e., fiðtÞ ¼ 0 for all
i],

P
N
i¼1 xiðtÞ is invariant. Examples of Eq. (1) include the

master equation of Markov jump processes, rate equation of
chemical reaction networks, and time evolution of the
observables in quantum systems. We define a time-
dependent velocity [57], which is the sum of the absolute
values of the external and exchanged flows, given by

υt;λ ≔ λ
X
i

jfiðtÞj þ
X
hi;ji∈E

jfijðtÞj; ð2Þ

where λ ≥ 0 is aweighting factor, and the second summation
is over all unordered pairs hi; ji ∈ E. For simplicity, we

denote υt;0 by υt. We also define the Manhattan norm
for an arbitrary vector x as kxk1 ≔

P
i jxij and the time

average of an arbitrary time-dependent quantity wt as
hwtiτ ≔ τ−1

R
τ
0 wtdt.

Wasserstein distance.—Here we introduce the discrete
L1-Wasserstein distance between two states x and y on the
graph GðV; EÞ. First, we consider the case in which x and y
are balanced (that is,

P
i xi ¼

P
i yi), and then we genera-

lize the distance to the unbalanced case (that is,P
i xi ≠

P
i yi). Let dij denote the shortest path distance

between the vertices i and j in the graph. In other words, dij
is the minimum length of paths connecting i and j. GraphG
is assumed to be connected [59]; therefore, dij is always
finite. Suppose that we have a transport plan that redis-
tributes x to y by sending an amount of πij from xj to yi
with a cost of dij per unit weight for all ordered pairs hi; ji.
The Wasserstein distance is then defined as the minimum
transport cost for all feasible plans, given by

W1ðx; yÞ ≔ min
π∈Πðx;yÞ

X
i;j

dijπij: ð3Þ

Here, Πðx; yÞ denotes the set of all transport plans π ¼
½πij� ∈ RN×N

≥0 that satisfy
P

j πij ¼ yi and
P

j πji ¼ xi.
Previous studies have shown that the Wasserstein distance
plays a crucial role in statistics and machine learning [60],
computer vision [61], linguistics [62], molecular biology
[63], and stochastic thermodynamics [33,64–66].
Next, we describe the generalized Wasserstein distance

for the unbalanced case. Transport between two unbalanced
states can be enabled by allowing add and remove
operations in addition to transportation between vertices.
More precisely, an infinitesimal mass δx of x can either
be removed at cost λkδxk1 or moved from x to y at cost
W1ðδx; δyÞ. Mathematically, the generalized Wasserstein
distance between unbalanced states can be defined as [67]

W1;λðx; yÞ ≔ minfλðkx − x̃k1 þ ky − ỹk1Þ þW1ðx̃; ỹÞg;
ð4Þ

where the minimum is over all the states x̃ and ỹ such that
kx̃k1 ¼ kỹk1. By definition [Eq. (4)], distanceW1;λ always
satisfies the triangle inequality [67]. If x and y are balanced
states, then W1;λ is reduced to W1 within the λ → þ∞
limit. We also note thatW1;λ can be calculated numerically
using the linear programming method [68].
Main results.—We now utilize the generalized

Wasserstein distance [Eq. (4)] to derive a topological speed
limit for any state xt obeying the general dynamics
[Eq. (1)]. Specifically, we prove that the minimum time
required to transform x0 into xτ is lower bounded by the
Wasserstein distance divided by the average velocity

τ ≥
W1;λðx0; xτÞ

hυt;λiτ
; ∀ λ ≥ 0: ð5Þ
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In the case that the external flows are absent [i.e.,
fiðtÞ ¼ 0], inequality (5) can be reduced to a simple bound
by taking the λ → þ∞ limit, which reads as

τ ≥
W1ðx0; xτÞ

hυtiτ
: ð6Þ

The inequalities [Eqs. (5) and (6)] are our main results; the
proof is postponed to the end of the Letter.
These results have several physically critical properties.

(i) First, these bounds can be derived as long as the time
evolution of xt is described by Eq. (1), which is a general
setting for both the classical and quantum cases. Notably,
the bounds can be saturated if the time evolution [Eq. (1)]
realizes an optimal transport plan. (ii) Second, our bounds
utilize topological information about the system dynamics
to provide a stringent constraint on the speed of changing
states. Topological information is encoded into the
Wasserstein distance, and this distance term can be as
large as the order of the system’s size. (iii) Third, by further
upper bounding the time-averaged velocity hυt;λiτ by
relevant quantities, such as the thermodynamic and kinetic
costs, we can derive more interpretable bounds, which
clarify the physical mechanism of the speed of state
transformations. (iv) Finally, the speed limit for an arbitrary
scalar observable defined in terms of state xt can also be
obtained as a consequence of Eq. (5) [68].
In the following, we illustrate the above remarks,

especially (i)–(iii), through two applications to classical
and quantum systems (see the Supplemental Material [68]
for further applications in isolated and Markovian open
quantum systems, measurement-induced quantum walk
[71], and quantum communication [72,73]).
Application 1: Chemical reaction networks.—We con-

sider a chemical reaction system composed of several
chemical species Xi (i ∈ S) that interact through reversible
elementary reaction channels ρ ∈ R. Here, S andR denote
the set of indices of the species and reaction channels,
respectively. Each reaction channel is represented as

X
i

νþρ
i Xi⇌

κþρ

κ−ρ

X
i

ν−ρi Xi; ð7Þ

where þρ and −ρ correspond to the forward and backward
reactions, respectively, fκ�ρg are the macroscopic reaction
rates, and fν�ρ

i g are the stoichiometric coefficients. Let xt
denote the vector of the mass concentrations of species. The
molar concentration ct can be related as ciðtÞ ¼ xiðtÞ=mi,
where mi denotes the molar mass of species Xi. The time
evolution of xt can be described by the deterministic rate
equation

_xiðtÞ ¼
X
ρ

miðνþρ
i − ν−ρi ÞJρt ; ð8Þ

where Jρt ≔ J−ρt − Jþρ
t is the net reaction current and

J�ρ
t ≔ κ�ρ

Q
i ciðtÞν

�ρ
i are the reaction fluxes.

Next, we derive the speed limits for the system in terms
of the Wasserstein distance defined on graph G. For
simplicity, here we consider closed reaction networks, in
which the total mass concentration is conserved [74]. The
generalization for open reaction networks, wherein the total
mass conservation may be violated, is presented in the
Supplemental Material [68]. The total mass conservation
law implies

P
i miðνþρ

i − ν−ρi Þ ¼ 0 for any ρ. Because of
these conditions, there always exist matrices Zρ ¼ ½zρij�
such that the rate equation (8) can be expressed in the form
of Eq. (1) with fijðtÞ ¼

P
ρ z

ρ
ijJ

ρ
t and fiðtÞ ¼ 0 [68]. The

graphG can be obtained by adding an undirected edge hi; ji
to E for any zρij ≠ 0. After some simple manipulations [68],
we can prove that

υt ≤
X
ρ

νρjJρt j; ð9Þ

where νρ ≔ ð1=2ÞPi mijνþρ
i − ν−ρi j. Combining Eqs. (6)

and (9) yields the following speed limit:

τ ≥
W1ðx0; xτÞ
hPρν

ρjJρt jiτ
≕ τ1: ð10Þ

Equation (10) implies that the operational time is lower
bounded by the Wasserstein distance and the net reaction
currents.
A thermodynamic speed limit can also be obtained using

Eq. (10). The entropy production rate of a chemical
reaction system can be defined as [76]

σt ≔
X
ρ

Jρt ln
J−ρt
Jþρ
t

; ð11Þ

where the gas constant is set to unity. We define the
following kinetic quantity:

lt ≔
X
ρ

ðνρÞ2 J−ρt − Jþρ
t

lnðJ−ρt =Jþρ
t Þ ; ð12Þ

which is the sum of the microscopic Onsager coefficients
[33,55]. Applying the Cauchy–Schwarz inequality,
we prove that hPρ ν

ρjJρt jiτ ≤ h ffiffiffiffiffiffiffiffi
σtlt

p iτ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσtiτhltiτ

p
.

Consequently, we obtain the following thermodynamic
speed limit:

τ ≥
W1ðx0; xτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσtiτhltiτ
p ≕ τ2: ð13Þ

Inequality (13) implies that the minimum time required to
transform x0 into xτ is determined by the product of the
thermodynamic and kinetic costs.
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We numerically demonstrate the derived bounds in
a cascade reaction network with jSj ¼ 10 species and
jRj ¼ 9 reaction channels (see Fig. 2). We also compare
the results with a nontopological bound reported
in Ref. [77], which reads as τ ≥ τ3 ≔ T ðc0; cτÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσtiτhdtiτ
p

. Here, T denotes the total variation distance,
and dt ≔ ðjSj=8Þ Pρ;iðνþρ

i − ν−ρi Þ2ðJþρ
t þ J−ρt Þ corre-

sponds to the diffusion coefficient. We calculate and plot
the lower bounds τið1 ≤ i ≤ 3Þ in Fig. 2. As shown, the
topological speed limits τ ≥ τ1 ≥ τ2 are tight; especially,
the bound τ ≥ τ1 is always saturated. On the contrary, the
nontopological bound τ ≥ τ3 is loose and does not provide
a meaningful bound for the speed of the system.
Application 2: Interacting bosonic systems.—Next, we

describe an application for quantum many-body bosonic
systems. We consider a model of bosons that hop on an
arbitrary finite-dimensional lattice and interact with each
other. Let Λ denote the set of all the sites in the lattice. The
Hamiltonian can be expressed in the following generic
form:

Ht ≔ −γ
X
hi;ji

ðb†i bj þ b†jbiÞ þ
X
Z⊆Λ

hZ: ð14Þ

Here, the first summation is over neighboring lattice sites
(which can be arbitrarily distant), γ > 0 describes the boson
mobility, bi and b

†
i are the bosonic annihilation and creation

operators for site i, respectively, n̂i ≔ b†i bi is the number
operator, and hZ is an arbitrary function of fn̂igi∈Z.
Examples include the Bose–Hubbard model, given byP

Z⊆Λ hZ ¼ ðU=2ÞPi n̂iðn̂i − 1Þ − μ
P

i n̂i, where U and
μ are real constants. Note that the graph GðV; EÞ of the
bosonic system is identical to the lattice topology (i.e., V is
the set of sites, and E is the set of edges that connect the two
neighboring sites). The maximum vertex degree of the
graph is denoted by dG.
We assume that the bosonic system is weakly coupled

to a Markovian thermal reservoir and can exchange

particles with the reservoir, where the time evolution of
the reduced density matrix is described by the Lindblad
equation [78]:

_ϱt ¼ −i½Ht; ϱt� þ
X
i∈Λ

ðD½Li;þ� þD½Li;−�Þϱt; ð15Þ

where D½L�ϱ ≔ LϱL† − ð1=2ÞfL†L; ϱg is the dissipator,
and Li;þ ¼ ffiffiffiffiffiffiffi

γi;þ
p

b†i and Li;− ¼ ffiffiffiffiffiffiffi
γi;−

p
bi are the jump

operators that characterize the absorption and emission
of bosons at site i, respectively. Hereafter, we set ℏ ¼ 1 for
simplicity.
We consider the vector of boson numbers occupied

at each site, xiðtÞ ¼ trfn̂iϱtg, and define the instant-
aneous total number of bosons as N t ≔

P
i∈Λ xiðtÞ.

Using the relation ½bi; n̂i� ¼ bi, we can show that
the time evolution of xiðtÞ can be expressed in the form
of Eq. (1) with fiðtÞ ¼ trfLi;þϱtL

†
i;þg − trfLi;−ϱtL

†
i;−g and

fijðtÞ ¼ 2γIm½trfb†jbiϱtg�. By inserting these terms into
υt;λ, we can immediately obtain the speed limit [Eq. (5)] for
bosonic transport.
Next, we derive a more physically interpretable speed

limit by upper bounding the velocity υt;λ. To this end, we
introduce two relevant physical quantities. The first is the
irreversible entropy production rate [79], which is the sum
of the entropic changes in the system and environment,
defined as σt ≔ σsyst þ σenvt . Here, σsyst ≔ −trf_ϱt ln ϱtg is
the rate of von Neumann entropy of the bosonic system,
and σenvt quantifies the heat dissipated to the environment as
follows:

σenvt ≔
X
i

ðtrfLi;þϱtL
†
i;þg − trfLi;−ϱtL

†
i;−gÞ ln

γi;þ
γi;−

; ð16Þ

where we have assumed the local detailed balance con-
dition [that is, lnðγi;þ=γi;−Þ is related to the heat dissipation
of the boson exchange at site i]. The second is quantum
dynamical activity [80,81], which quantifies the boson
exchange frequency between the system and reservoir,
given by

at ≔
X
i

ðtrfLi;þϱtL
†
i;þg þ trfLi;−ϱtL

†
i;−gÞ: ð17Þ

Using these quantities, we can prove that the velocity υt;λ is
upper bounded as [68]

υt;λ ≤ γdGN t þ λ
σt
2
Φ
�
σt
2at

�
−1
; ð18Þ

where ΦðxÞ is the inverse function of x tanhðxÞ. By
combining Eqs. (5) and (18), we obtain the following
speed limit:

τ ≥
W1;λðx0; xτÞ

hγdGN t þ λσtΦðσt=2atÞ−1=2iτ
: ð19Þ

FIG. 2. Numerical demonstration of the speed limits in the
cascade reaction network with N ¼ 10. The operational time τ,
topological bounds τ1 and τ2, and nontopological bound τ3 are
depicted by solid, dashed and dash-dotted, and dotted lines,
respectively. The parameters are set to kf ¼ 2 and kb ¼ 1. The
initial mass concentration is x0 ¼ ½1; 0.9;…; 0.1�⊤.
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Equation (19) implies that the speed of bosonic transport is
lower bounded by the lattice topology, boson mobility, and
dissipation. The bound also indicates that dissipative
controls can help accelerate the bosonic transport. The
inequality [Eq. (19)] is valid for arbitrary initial states of the
bosonic system.
It is worthwhile discussing the vanishing coupling limit

(i.e., the case where the system becomes isolated). In
this case, σt ¼ at ¼ 0 and N t ¼ N for all times. Defining
the boson concentration x̄iðtÞ ≔ N −1xiðtÞ, we obtainP

i x̄iðtÞ ¼ 1. By taking the λ → þ∞ limit, Eq. (19) is
reduced to a simple speed limit for an isolated bosonic
system:

τ ≥
W1ðx̄0; x̄τÞ

γdG
: ð20Þ

Bound (20) has a remarkable implication for bosonic
transport. Assume that all bosons are initially concentrated
in a region R1, and we want to transport all of them to a
distinct region R2 within a finite time τ. In this case,
W1ðx̄0; x̄τÞ ≥ distðR1; R2Þ, where distðR1; R2Þ denotes the
length of the shortest path connecting the regions R1 and
R2. Therefore, Eq. (20) implies that transporting bosons
always takes at least a time proportional to the distance
between the two regions: τ ≥ distðR1; R2Þ=ðγdGÞ, which
cannot be obtained with conventional speed limits. This
statement holds for arbitrary initial states, including the
pure states considered in Ref. [82]. While the Lieb–
Robinson bounds [83–87] imply a linear light cone for
the operator spreading, Eq. (20) provides a useful bound for
the operational time required for bosonic transport.
Proof of Eq. (5).—We consider the time discretization

of Eq. (1) with time interval δt ¼ τ=K. For each k ∈
½0; K − 1� and t ¼ kδt, we have

xiðtþ δtÞ ¼ xiðtÞ þ δt

�
fiðtÞ þ

X
j∈Bi

fijðtÞ
�
: ð21Þ

Equation (21) indicates that we can transform xt into xtþδt
by adding fiðtÞδt to xiðtÞ with cost λjfiðtÞjδt and exchang-
ing fijðtÞδt between neighboring vertices i and j with cost
jfijðtÞjδt. This instance of transport plan takes the total
cost of

�
λ
X
i

jfiðtÞj þ
X
hi;ji∈E

jfijðtÞj
�
δt ¼ υt;λδt; ð22Þ

which should be larger than or equal to W1;λðxt; xtþδtÞ.
Therefore, taking the sum of Eq. (22) from k ¼ 0 to
k ¼ K − 1 and applying the triangle inequality for W1;λ

yield

XK−1
k¼0

υt;λδt ≥ W1;λðx0; xτÞ: ð23Þ

By taking the δt → 0 limit in Eq. (23), we obtain
τhυt;λiτ ≥ W1;λðx0; xτÞ, from which Eq. (5) is immediately
derived.
Conclusion.—In this Letter, we derived the topological

speed limit for vector states that accounts for the network
structure in the underlying dynamics [88]. The speed limit
provides a tight bound for the operational time and insight
into the system speed from a topological perspective. We
showed that the bound is applicable to various dynamics as
long as the time evolution of the physical state can be
described in terms of a graph. Because our speed limit is
derived in a general setting, we expect that it can be applied
to obtain fundamental bounds for several other dynamics.
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