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Entanglement entropy is a powerful tool in characterizing universal features in quantum many-body
systems. In quantum chaotic Hermitian systems, typical eigenstates have near maximal entanglement with
very small fluctuations. Here, we show that for Hamiltonians displaying non-Hermitian many-body
quantum chaos, modeled by the Ginibre ensemble, the entanglement entropy of typical eigenstates is
greatly suppressed. The entropy does not grow with the Hilbert space dimension for sufficiently large
systems, and the fluctuations are of equal order. We derive the novel entanglement spectrum that has
infinite support in the complex plane and strong energy dependence. We provide evidence of universality,
and similar behavior is found in the non-Hermitian Sachdev-Ye-Kitaev model, indicating the general
applicability of the Ginibre ensemble to dissipative many-body quantum chaos.
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Introduction.—In quantum mechanical systems, it is
standard to take the Hamiltonian of the system to be
Hermitian, ensuring the reality of the energy spectrum.
However, relaxing this Hermiticity has proven to lead to
many novel and unexpected phenomena [1]. These phe-
nomena are not mere theoretical curiosities, but physically
relevant, describing the physics of open quantum systems.
Given the widespread applicability of non-Hermitian

physics, it is natural to ask what features are universal. This
is our impetus for combining two unifying subjects in the
context of non-Hermitian many-body physics, entangle-
ment and random matrix theory. Entanglement entropy has
been an indispensable tool characterizing many-body
physics, with milestone results in gapped [2], critical [3],
topological [4,5], holographic [6], and dynamical [7]
systems. Entanglement theory has only recently been
applied to non-Hermitian physics, with some of the main
achievements coming from characterizations of nonunitary
conformal field theories [8–14].
The goal of this Letter is to move away from these

ground state studies to the generic properties of typical
eigenstates. This is of particular interest in the context of
the emerging field of dissipative quantum many-body
chaos [15–23]. Our strategy is to analyze the eigenstates
of the complex Ginibre ensemble, whose matrix elements
are independent and identically distributed (IID) complex
Gaussian random variables [24]. This is our proposed
analogy to the typical eigenstates frequently used in
Hermitian systems that are eigenstates of the Gaussian
unitary ensemble (equivalently “Haar random” states) [25].
The Ginibre ensemble has been demonstrated to universally
emerge in non-Hermitian many-body quantum chaotic
systems [15–18,26,27]. This is anticipated by the

dissipative analog of the Berry-Tabor and Bohigas-
Giannoni-Schmit conjectures [28,29].
Non-Hermitian Hamiltonians, H, have distinct left and

right eigenvectors, jLii and jRii, residing in an N-dimen-
sional Hilbert space, that form a biorthonormal basis
hLijRji ¼ δij. Following the biorthogonal formulation of
quantum mechanics [30], we choose the density matrix of
an eigenstate to inherit the non-Hermiticity of the
Hamiltonian

ρðiÞ ≔ jRiihLij: ð1Þ

With this choice, the Heisenberg evolution of general
density matrices remains i∂tρ ¼ ½H; ρ�.
We consider a bipartition of the Hilbert space H ¼

HA ⊗ HB with sub-Hilbert space dimensions NA and NB.
Performing the partial trace onHB, we arrive at the reduced
density matrix

ρðiÞA ≔ TrBρðiÞ: ð2Þ

This describes the state localized to subsystem A because
the expectation values of all observables are captured by the

reduced state hOAi ¼ TrðρðiÞA OAÞ.
While (2) still has unit trace, its eigenvalues are generally

complex. To accommodate, we use a generalized definition
of the entanglement entropy [14,31]

SvNðρAÞ ¼ −TrρA log jρAj; ð3Þ

which reduces to the standard entanglement entropy for the
Hermitian case. While its quantum information theoretic
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interpretation is not yet entirely understood, it obeys
desirable properties such as SvN ≠ 0 only if A and B are
entangled, it is amenable to path integral constructions, and
has been useful in characterizing nonunitary conformal
field theories [11–14].
The entropy as a function of logNA is referred to as the

“Page curve” [25] and has been the topic of intense study
in both many-body and quantum gravitational physics
[32–35]. In this Letter, we compute the Page curve for
non-Hermitian systems by first identifying the structure of
typical reduced density matrices, evaluating their eigen-
values (called the entanglement spectrum), then computing
the expectation of the entanglement entropy and its
variance. We numerically demonstrate that our results
exhibit universality by studying other random matrix
ensembles as well as the non-Hermitian Sachdev-Ye-
Kitaev (NSYK) model.
Structure of reduced density matrix.—To get oriented,

we review the Hermitian case where one considers eigen-
vectors of the Gaussian unitary ensemble (GUE). The
eigenvectors on HA ⊗ HB can be written as

jΨi ¼
XNA

i¼1

XNB

α¼1

XiαjiiA ⊗ jαiB; ð4Þ

where the states in the sum are orthonormal bases for the
sub-Hilbert spaces and the Xiα’s (matrix elements of X) are
IID complex Gaussian random variables with varianceN−1.
The random induced states on HA are ρA ¼ XX†, defining
the celebrated Wishart ensemble [36]. The spectrum of
Wishart matrices is given by the Marchenko-Pastur dis-
tribution. The entropy is consequently evaluated to

EX½SvN� ¼ logNA −
NA

2NB
; NA ≤ NB: ð5Þ

The entropy is extremely close to the upper bound of
logNA. This scales extensively with the system size and is
independent of the eigenvalue location, which we will soon
see is not the case for non-Hermitian systems.
We seek the non-Hermitian analog of XX†. To describe

the structure of ρðiÞA , we use the so-called “Hermitization
trick” [37]. Define

Hz ≔
�

0 H − z

ðH − zÞ† 0

�
; ð6Þ

with z ∈ C and H is drawn from the Ginibre ensemble. We
point out that

λ ∈ SpecðHÞ ⇔ 0 ∈ SpecðHλÞ: ð7Þ

This is the key observation that will enable us to compute

the spectrum of ρðiÞA and, consequently, its entanglement

entropy. We denote the eigenvalues of Hz by Ez
�i

and by jwz
�ii the corresponding orthogonal eigenvectors.

The chiral symmetry of Hz induces a symmetric spectrum
around zero, i.e., Ez

i ≥ 0 and Ez
−i ¼ −Ez

i ; accordingly, the
eigenvectors jwz

�ii are of the form jwz
�ii ¼ ðjuz

i i;�jvzi iÞ,
with juz

i i; jvzi i ∈ CN . Ez
i deterministically coincides with

the singular values of H − z, and juz
i i; jvzi i denote the

corresponding left and right singular vectors, i.e.,

ðH − zÞjvzi i ¼ Ez
i juz

i i; ðH − zÞ†juz
i i ¼ Ez

i jvzi i: ð8Þ

The representations (6) and (8) are completely equivalent.
Let λi be the eigenvalue with corresponding right

and left eigenvectors jRii, jLii from (1). Then, by (7)–(8),
it follows that

jvλi1 i ¼
jLii
kLik

; juλi
1 i ¼

jRii
kRik

: ð9Þ

We introduce the notations jvi ≔ jvλi1 i, jui ≔ juλi
1 i and,

thus, find that

ρðiÞA ¼ TrB½juihvj�
hujvi : ð10Þ

The key point is that, for fixed deterministic z, we can
compute the distribution of juz

i i; jvzi i using Hermitian
techniques such as the Dyson Brownian motion (DBM)
for eigenvectors introduced in [38] (see, also, [39–43]). We
explain this in more detail in the Supplemental Material
[44]. This would not have been possible analyzing the non-
Hermitian eigenvectors Ri and Li directly since there is no
known non-Hermitian analog for eigenvector DBM. By (9),
we need to study the case z ¼ λi, i.e., when z is random,
however, we expect (and numerically confirm) the same
distribution as juz

i i; jvzi i for fixed z. We remark that for H
Ginibre, a similar result can be obtained via Weingarten
calculus [45], however, we decided to rely on DBM since
this approach applies to more general ensembles for H (see
Universality below).
Now, we will study the spectrum of ρðiÞA conditioned on

the event that λi ¼ z, for some jzj < 1. In order to keep the
argument simple and concise, we neglect the case jzj ≈ 1;
the analysis in this regime would be analogous except for
the fact that the distribution of ðkLikkRikÞ−1 would be
more complicated compared to what we have below (12)
(see Ref. [46]).
Since H is a Ginibre matrix, the singular vectors jvii of

H − z are Haar unitary distributed (here, jv1i ¼ jvi) [47].
Now, we write jui in the jvii basis

jui ¼
X
i

cijvii; ci ≔ hvijui: ð11Þ

The coefficient c1 is distributed as
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c1 ¼ hujv1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
Nð1 − jzj2Þ

r
; ð12Þ

as computed in [46,51]. In particular, for the distribution of
c1 no DBM is required. γ2 is a random variable drawn from
the Gamma distribution with shape parameter 2, i.e., its
density is given by xe−x. The rest of the ci’s, for i ≥ 2, are
IID standard complex Gaussian random variables and
independent of c1. More precisely, using DBM [38–43],
we can show that any finite (independent of N) collection
of ci ’s, for i ≥ 2, converge to IID standard complex
Gaussians. For Ginibre, one can expect, for instance, using
Weingarten calculus, that this convergence holds for all the
ci’s with i ≥ 2. This is also confirmed numerically below.
We point out that, to use DBM, we write

ci ≔ hvijui ¼ hwz
1jFjwz

i i; F ≔
�
0 0

1 0

�
; ð13Þ

with jwz
i i being defined below (7), since eigenvector

overlaps of this form are well understood for Hermitian
matrices using DBM [38–43]. See the Supplemental
Material XX for a gentle explanation of this approach.
Thus, we find that

ρAB ¼
X
i

ci
c1

jviihv1j; ð14Þ

which has unit trace but is non-Hermitian, with the ci’s
distributed as described above. In the HA ⊗ HB basis, we
have

jvii ¼
X
jα

XðiÞ
jα jjiAjαiB; ð15Þ

where the XðiÞ’s are NA × NB rectangular matrices with IID
Gaussian variables with variance N−1 because the singular
vectors, jvii, are Haar distributed. We neglect the normali-
zation because it concentrates around one at large N. The
singular vectors are correlated with each other only in that
they are orthonormal, a subtlety that we may safely ignore
in the limits we consider. Thus, the reduced density matrix
is given by

ρA ¼
X
i

ci
c1

XðiÞXð1Þ†; ð16Þ

defining a non-Hermitian analog of the Wishart ensemble.
Distinct non-Hermitian analogs of the Wishart ensemble
have been studied in the math literature [52–54], though
these ensembles have no clear interpretation as density
matrices for quantum systems. The most striking difference
is that we will see that (16) has noncompact support with a
heavy tail, unlike the compactly supported eigenvalue
spectra previously studied. This is a consequence of the

correlation of the left and right eigenvectors encoded in c1,
which the models in [52–54] are not able to capture. This
makes the analysis much more delicate in the current case.
As shown in [53], the product of rectangular IID matrices
gives a matrix with the spectrum of a Ginibre matrix for
1 ≪ NA ≪ NB rescaled by N−1=2. When i ¼ 1, this limit
leads to the normalized identity matrix plus a matrix with
the spectrum of a GUE matrix suppressed by N−1=2 and,
hence, is irrelevant. In total, the density matrix takes the
form

ρA ¼ 1A
NA

þMGUEffiffiffiffi
N

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jzj2
γ2N

s XN
i¼2

ciM
ðiÞ
Ginibre: ð17Þ

By the central limit theorem (CLT), we can add all the
random matrices at large N to find

ρA ¼ 1A
NA

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jzj2

γ2

s
M; ð18Þ

where M is a Ginibre matrix independent of γ2. Note that,
to go from (16) to (18), we did not need that XðiÞXð1Þ† is
approximately Ginibre and that the ci’s for i ≥ 2 are IID;
we only needed to ensure that the CLT for the entries of ρA
held. This remark will be relevant for the Universality
discussion below when matrices H with not necessarily
Gaussian entries are considered. Thus, we find that reduced
density matrices of the Ginibre ensemble are Ginibre
themselves, with a random, eigenvalue dependent, scaling
and deterministic shift.
Entanglement spectrum.—Now that we understand the

structure of the non-Hermitian ensemble defining the
reduced density matrix, we compute the entanglement
spectrum. Famously, the spectrum of Ginibre matrices is
uniformly distributed on the unit circle [24]. In the 1 ≪
NA ≪ NB regime, the entanglement spectrum, conditioned
on γ2, is, therefore, given by a shifted circular law due to the
Ginibre matrix in (18)

μðx; γ2Þ ¼
(

γ2
π ; x < γ−1=22

0; x > γ−1=22

; ð19Þ

where x ≔ ðjN−1
A − λj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jzj2

p
Þ. Integrating this distri-

bution over γ2,

μðxÞ ¼ 1

π

Z
x−2

0

dγ2γ22e
−γ2 ; ð20Þ

we then find

μðxÞ ¼ 1

π

�
2 − e−

1

x2

�
1þ 2x2 þ 2x4

x4

��
: ð21Þ
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Note that μðxÞ is rotationally invariant. For NA > NB, the
spectrum is identical with NA ↔ NB and the addition of
NA − NB eigenvalues at λ ¼ 0. This spectrum has infinite
support with a very heavy tail, decaying only as jλj−6 at
large jλj, in stark contrast with the compactly supported
eigenvalue spectra of [52–54]. In Fig. 1, we show the very
good agreement between (21) and numerical data for small
matrices. We lack an analytical expression for the spectrum
at NA ¼ NB, though we numerically show the accuracy of
(14) in all regimes in the Supplemental Material XX.
Page curve.—The average entropy is given by

EM;γ2 ½SvNðjzjÞ� ¼ −NA

Z
dλμðλÞλ log jλj: ð22Þ

Conditioned on R ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − jzj2Þ=γ2�

p
, the entropy is

EM½SvNðRÞ� ¼ −
NA

πR2

Z
2π

0

dθ
Z

R

0

drrðN−1
A þ reiθÞ

× log

�
N−2

A þ 2r cosðθÞ
NA

þ r2
�
: ð23Þ

Expanding in NA, only the OðN0
AÞ term contributes due to

the integral over θ, leading to

EM½SvNðRÞ� ¼ − logR: ð24Þ

Integrating over γ2, we arrive at

EM;γ2 ½SvNðjzjÞ� ¼
1 − γ − log ð1 − jzj2Þ

2
; ð25Þ

where γ is the Euler-Mascheroni constant. Surprisingly,
there is no scaling with NA, in stark contrast to the
Hermitian case (5). We show remarkable agreement
between (25) and small matrices, even at NA ¼ NB, in
Fig. 2.

As a consequence of the large fluctuations in the
structure of the density matrix, there are large fluctuations
in the von Neumann entropy. Therefore, we would like to
understand its variance. To do so, we split the variance into
three terms

EM;γ2 ½jSvN − EM;γ2 ½SvN �j2�
¼ Eγ2 ½jEM½SvN �j2� − jEM;γ2 ½SvN�j2
þ EM;γ2 ½jSvN − EM½SvN �j2�: ð26Þ

The first term on the second line is simply the square of
(25). The term in the first line may be analogously
computed at large NA by Taylor expanding the logarithm

Eγ2 ½jEM½SvN �j2� ¼
π2 − 6

24
þ jEM;γ2 ½SvN�j2: ð27Þ

The most involved term is the final one. Fortunately, the
variance of functions of eigenvalues, fðλiÞ, of Giniak/
ciabre matrices was analyzed in [55]. There, it was found
that

EM

�����Xi
fðλiÞ − EM

�X
i
fðλiÞ

�����2
�

¼ 1

4π

Z
D
d2zj∇fj2 þ 1

2

X
k∈Z

jkjjf̂ðkÞj2; ð28Þ

whereD is the unit disk and f̂ðkÞ is the kth Fourier mode of
f on the perimeter of the disk. For the entropy, we
must take

fðzÞ ¼ −ðN−1
A þ RzÞ log jN−1

A þ Rzj: ð29Þ

After averaging over γ2, the three terms are NA independent
at large NA, thus, the same order as the mean (25).

FIG. 1. The entanglement spectrum is shown for various values
of log2 NA (labeled in the legend) and N ¼ 214. The data is
averaged over all eigenstates and compared with the large-N
formula, (21), displayed as the solid black line. There are clear
deviations from (21) outside of the 1 ≪ NA ≪ NB regime.

FIG. 2. The von Neumann entropy (base 2) for eigenvectors of
Ginibre matrices for various values of jzj. The circles are
numerical data, the solid line is evaluated from the finite N
spectrum (21), and the dashed line is the asymptotic result (25).
We have taken N ¼ 214 and 103 disorder realizations. Only the
real part is plotted because the imaginary part averages to zero.
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Interestingly, the variance is monotonically decreasing with
jzj, ranging between ∼0.906 at z ¼ 0 and ∼0.161 at z ¼ 1.
Universality.—It is clearly important to understand

whether our results exhibit universality. A similar analysis
to the one performed above holds for left and right
eigenvectors of more general non-Hermitian matrix ensem-
bles, i.e., for matricesH with IID entries but not necessarily
with Gaussian distribution, matrices with independent
(but not necessarily identically distributed) entries, and
even for matrices with some correlation structure; however,
the precise limiting constant may differ from (25). The
common feature in all these models is that we expect to get
an NA-independent entropy. This is motivated from the fact
that the DBM arguments in [38–43] and reviewed in the
Supplemental Material XX hold true for fairly general
Hermitian ensembles. In these cases, the vectors jvzi i will
not be Haar distributed, but the CLT still holds, so the
approximation in (18) will be valid. We expect the scaling
constant ð1 − jzj2Þ−1=2 to be dependent only on the shape of
the eigenvalue distribution, but the γ2 distribution to be
universal. For matrices obeying the circular law, we
demonstrate the ð1 − jzj2Þ−1=2 scaling to be the correct
one in Fig. 3 for two random matrix ensembles that are very
different than Ginibre, suggesting universality.
It is additionally important to consider bona fide

Hamiltonian systems such as the NSYK model of N
Majorana fermions

HNSYK ¼
XN

i1<i2<…<iq

ðJi1i2;…;iq þ iMi1i2;…;iqÞψ i1ψ i2 ;…;ψ iq ;

ð30Þ

where Ji1i2;…;iq andMi1i2;…;iq are IID real Gaussian random
variables with zero mean, variance ð2=Nq−1Þ, and
fψ i;ψ jg ¼ 2δij. For even q and N mod 8 is 2 or 6, the
Hamiltonian is in the complex Ginibre symmetry class

[26,56]. We show the rotationally symmetric but non-
uniform eigenvalue distribution and average entropy in
Fig. 4. “Unfolding” the eigenvalue nonuniformity warrants
further attention to compare quantitatively with the Ginibre
ensemble.
Discussion.—In this Letter, we have presented the

entanglement spectrum and entanglement entropy of eigen-
vectors of Ginibre matrices, relying on the determination of
the novel structure of correlations in the density matrix. We
found that the support of the entanglement spectrum is not
compact, with eigenvalue densities decaying at infinity
with a heavy jλj−6 tail in the complex plane. This led us to
find a Page curve that did not scale with the system size,
vastly suppressed as compared to the Hermitian Page curve.
Moreover, we found the Page curve to not be self-averaging
with fluctuations of the same order as the mean, in stark
contrast with the Hermitian case.
There are many interesting research directions motivated

from this Letter. An important characterization of many-
body chaos beyond the entanglement entropy is the
eigenstate thermalization hypothesis (ETH) which, moti-
vated by random matrix theory, describes the universal
behavior of expectation values of simple observables and
their fluctuations [57,58] (see, also, [40,43,59]). In [60], we
generalize the ETH to non-Hermitian systems by employ-
ing the Ginibre ensemble. Along with providing the
compelling prediction that observables have large interei-
genstate fluctuations (hence, no thermalization), this leads
to an alternate derivation of (18).
Furthermore, it may be interesting to explore the

entanglement entropy in different classes of non-Hermitian
many-body systems, such as those with symmetries
[26,56,61], those with localization transitions [15],
noninteracting fermions [26], Liouvillians [21,22,62–66],
nonequilibrium systems [67,68], or many-body scars [69].
We hope to report on some of these directions in the near
future.
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