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Intriguingly, quantum many-body systems may defy thermalization even without disorder. One example
is so-called fragmented models, where the many-body Hilbert space fragments into dynamically
disconnected subspaces that are not determined by the global symmetries of the model. In this Letter
we demonstrate that the tilted one-dimensional Fermi-Hubbard model naturally realizes distinct effective
Hamiltonians that are expected to support nonergodic behavior due to fragmentation, even at resonances
between the tilt energy and the Hubbard on site interaction. We find that the effective description captures
the observed dynamics in experimentally accessible parameter ranges of moderate tilt values. Specifically,
we observe a pronounced dependence of the relaxation dynamics on the initial doublon fraction, which
directly reveals the microscopic processes of the fragmented model. Our results pave the way for future
studies of nonergodic behavior in higher dimensions.
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Quantum many-body systems out of equilibrium are
typically characterized according to their long-time behav-
ior of local observables. While generic quantum systems
reach thermal equilibrium as predicted by the eigenstate
thermalization hypothesis (ETH) [1–3], well-known excep-
tions to this paradigm are integrable [4,5] and many-body
localized (MBL) systems [6–10]. Their nonergodicity is
based on an extensive set of conserved quantities [11,12].
Recently, a new class of models with intermediate behavior,
summarized as weak ergodicity breaking [13], renewed the
interest in questions of quantum thermalization. A key
signature of weak ergodicity breaking is the strong
dependence of the dynamics on the initial conditions,
which discriminates it from both fully thermal and strongly
ergodicity-breaking systems. This is due to a special
structure of the many-body Hilbert space, which exhibits
(approximately) disconnected subspaces that are not char-
acterized by the global symmetries of the model.
For instance, quantum many-body scars [14–20], as

recently observed with Rydberg atoms [21,22], are the result
of an atypical set of eigenstates, which are embedded in an
otherwise thermal spectrum. Another prominent example are
fractonic systems, such as one dimensional (1D) setups with
conserved U(1) charge and its associated dipole moment
[23–27]. In these models the Hilbert space fragments into
exponentially many disconnected subspaces, a phenomenon
known as Hilbert-space fragmentation. In fact, similar
phenomena also appear in classical stochastic dynamics in
the realm of kinetically constrained spin systems, where it is
known as reducibility [28,29]. The major difference is that

dipole and higher-moment conserving systems [29] provide a
provable and systematic way of constructing such models
without explicit kinetic constraints.
Remarkably, the tilted 1D Fermi-Hubbard model

[Fig. 1(a)] exhibits a wide range of (weak) ergodicity-
breaking phenomena andhas emerged as a versatile platform
for experimental studies of nonergodicity. Recent experi-
ments have studied the low-tilt regime investigating dis-
order-free localization in the form of Stark MBL with ions
[30] and superconducting qubits [31], as well as non-
ergodicity due to kinetic constraints using ultracold fer-
mions in tilted optical lattices [32]. Intriguingly, in the limit
of strong tilts Δ ≫ J, the Fermi-Hubbard model hosts a
variety of distinct fragmented models, which are derived as
effective Hamiltonian descriptions [23–25]. In this regime,
approximate conservation laws, such as dipole-moment
conservation, result in a fragmentation of the Hilbert space
into exponentially many fragments K, such that even states
belonging to the same symmetry sector S, defined, e.g., by
the dipole moment, may become dynamically disconnected
[Fig. 1(b)], when considering finite order in perturbation
theory. In this Letter we experimentally study the properties
of the underlying effective Hamiltonian that governs the
transient dynamics. We study the relaxation dynamics of a
period-two charge density wave up to about 140 tunneling
times for different doublon (doubly occupied site) fractions
nD [Fig. 1(c)] in the initial state. We observe distinct
relaxation behavior for different initial states, whose micro-
scopic origin is at the heart ofHilbert-space fragmentation in
the tilted Fermi-Hubbard model.
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Our experimental setup consists of a degenerate Fermi
gas of about 50ð5Þ × 103 40K atoms at an average temper-
ature of 0.12ð2ÞTF, where TF is the Fermi temperature. The
gas is prepared in an equal mixture of two magnetic
hyperfine states, j↓i ¼ jmF ¼ −9=2i and j↑i ¼ jmF ¼
−7=2i, in the F ¼ 9=2 ground-state hyperfine manifold.
The fermions are loaded into a 3D optical lattice created by
three pairs of retroreflected laser beams. The lattice along
the primary axis has a wavelength λp ¼ 532 nm, and the
orthogonal lattices operate at λ⊥ ¼ 738 nm. We work at a
primary lattice depth of 12Er;p, where one tunneling time
τ ¼ ℏ=J ¼ 0.75 ms. The orthogonal lattices are set to
55Er;⊥; here Er;i ¼ h2=ð2mλ2i Þ is the recoil energy, with
i ∈ fp;⊥g, m the atomic mass, λi the respective lattice
wavelength, and h the Planck constant. This creates a 2D
array of 1D chains, where the central chain has a length
L ≈ 290 and coupling to neighboring chains is suppressed
by a factor of ∼10−3, such that the system can be
considered 1D on our experimental timescales. A magnetic
field generated via a single coil induces a linear potential
gradient (“tilt”) along the primary lattice axis. Since the
spins are encoded in different magnetic hyperfine states, the

tilt Δσ, σ ∈ f↑;↓g, is slightly state dependent, Δ↑ ≃ 0.9Δ↓

[33]. The dynamics of each 1D chain is described by the
tilted 1D Fermi-Hubbard model [Fig. 1(a)]

Ĥ ¼ −J
X

i;σ

ðĉ†iþ1;σ ĉi;σ þ H:c:Þ þ U
X

i

n̂i;↑n̂i;↓

þ
X

i;σ

Δσin̂i;σ; ð1Þ

where ĉi;σ (ĉ†i;σ) denotes the fermionic annihilation (crea-

tion) operator for spin σ on site i and n̂i ¼ ĉ†i ĉi.
In order to study dynamics, we use a bichromatic

superlattice to prepare a period-two charge-density wave
(CDW), where only even sites are occupied [33]. After a
short dephasing time in the deep 3D lattice there are no
residual coherences, and the initial state can be described
by an incoherent mixture of localized product states with
random spin configurations at zero net magnetization.
The dynamics is initiated by quenching the primary lattice
to the desired value. After initiating the dynamics, we probe
the relaxation by measuring the relative atom number on
even (Ne) and odd (No) lattice sites, given by the ensemble-
averaged imbalance I ¼ ðNe − NoÞ=ðNe þ NoÞ, which we
directly extract using a bandmapping technique [49,50].
Moreover, using near-resonant light pulses to remove
doubly occupied sites before detection, we have access
to singlon (singly occupied site) and doublon-resolved
imbalances, IS and ID. In this Letter we restrict our
observation times to 140τ, since for longer times light-
assisted collisions significantly reduce the doublon frac-
tion [33].
In the limit of large tiltsΔ ≫ jUj; J and forΔ≡ Δ↓ ¼ Δ↑

we can use a Schrieffer-Wolff (SW) transformation to
expand Hamiltonian [Eq. (1)] in powers of 1=Δ [33]. Up
to third order it reads as

Ĥeff ¼ Jð3ÞðT̂3 þ 2T̂XY þ 2V̂Þ þ Ũ
X

i

n̂i;↑n̂i;↓; ð2Þ

with the effective tunneling Jð3Þ ¼ J2U=Δ2, the renormal-
ized on site Hubbard interaction Ũ ¼ Uð1 − 4J2=Δ2Þ,
and a nearest-neighbor interaction V̂ ¼ P

i;σ n̂i;σn̂iþ1;σ̄ ,
where σ̄ denotes the opposite spin of σ. The dynamics is
governed by T̂3 ¼

P
i;σðĉ†i;σ ĉiþ1;σ ĉiþ1;σ̄ ĉ

†
iþ2;σ̄ þ H:c:Þ and

an exchange term T̂XY ¼ P
iðĉ†i;↑ĉi;↓ĉ†iþ1;↓ĉiþ1;↑ þ H:c:Þ.

This Hamiltonian is SU(2) invariant and conserves charge
(Q̂ ¼ P

i n̂i) and dipole moment (P̂ ¼ P
i in̂i). Similar to

other dipole-conserving models studied previously in spin
chains [23], random unitary circuits [24,26], and spinless
Hubbard systems [25,27], it is strongly fragmented.
The spin-dependent tilt Δσ in Hamiltonian [Eq. (1)]

introduces additional constraints. In order to tune this spin-
dependence in the experiment we employ the technique of
radio-frequency (RF) dressing [33,51,52], where we use an

(a)

(c)

(b)

FIG. 1. Hilbert-space fragmentation in the tilted 1D Fermi
Hubbard model. (a) Schematic of the tilted Fermi-Hubbard model
(↑ atoms red, ↓ atoms blue) with linear potential (“tilt”) of
strengthΔ, tunneling J, and Hubbard interactionU. (b) Schematic
illustration of Hilbert-space fragmentation. The symmetry sectors
S of the total Hilbert space H decouple into (approximately)
disconnected fragments K. (c) Doublon-number dependent re-
laxation dynamics IðtÞ starting from an initial period-two charge-
density wave with Ið0Þ ¼ 1 and doublon fraction nD. The
imbalance I is a measure for the relative occupation of even e
and odd o lattice sites; τ is one tunneling time. The schematic
illustrates the correlated tunneling process of the effective
Hamiltonian for Δ ≫ jUj; J [Eq. (2)], which dominates, when
the initial state contains doublons (nD > 0). The solid lines
are TEBD simulations (cumulative average) for U ¼ 2.7J and
Δ ¼ 8J for a lattice with L ¼ 101 ðnD ¼ 0Þ and L ¼ 52 ðnD ¼
0.27Þ sites according to the effective Hamiltonian [Eq. (2)]. The
dashed line indicates the steady-state value of I for a thermal
system at infinite temperature (within S).
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additional RF field to couple the two spins. Thereby we
realize dressed states that see a weighted average of Δ↑ and
Δ↓. The weights are determined by the resonant RF
coupling strength Ω0 and the detuning from resonance.
This allows us to adjust the relative tilt difference δΔ ¼
ðΔ̃↓ − Δ̃↑Þ by tuning the RF coupling strength [Fig. 2(c)],
where Δ̃σ denotes the spin-dependent tilt of the dressed
states. The maximum tilt difference is determined by the

mF quantum numbers in the absence of RF dressing, and
the smallest value of δΔ ¼ 0.048J is reached for the largest
coupling strength. The Hubbard interaction U is invariant
under RF dressing [33,53], which allows us to tune its
magnitude via the Feshbach resonance at 202.1 G. There is
also a residual harmonic confinement due to the trapping
laser beams. The strength of this term is ∼10−3J and does
not impact the steady-state behavior on the timescales
studied in this Letter, as shown previously [32].
We start by measuring relaxation dynamics for

initial states with and without doublons [Fig. 2(a)], where
nD ¼ ND=ðNS þ NDÞ and ND (NS) is the number of atoms
on doubly (singly) occupied lattice sites [33]. After a fast
drop at short times, a steady-state value emerges for
evolution times t > 30τ, hinting toward nonergodic behav-
ior. The apparent fast drop develops during coherent Bloch
oscillations at short times, which we do not study here. For
initial states with doublons the steady-state value is
reduced, in agreement with time-evolving block decimation
(TEBD) simulations [33] of the full [Eq. (1)] and the
effective model [Eq. (2)]. Here, the numerical traces are
time averaged [Figs. 2(a) and 2(b)] in order to mimic
dephasing of the observed oscillations, which in the
experiment is realized by averaging over an inhomo-
geneous distribution. In the Supplemental Material [33],
we provide an extensive discussion of different imperfec-
tions in our system. We find that the observed dynamics
shows a remarkable resilience to most of them, and we only
included the relevant ones in the theoretical model, which
we identified as the fraction of holes in the initial state and
averaging over the residual spin-dependent tilt δΔ. The
slow residual decay of the experimental singlon time trace
is due to technical heating caused by the transverse lattice
laser beams. The exact and effective numerical traces are in
agreement. The small systematic offset for t≳ 10τ is due to
higher order terms and decreases for larger tilts or smaller
interactions.
The effective model in Eq. (2) allows for a microscopic

understanding of the doublon-dependent dynamics. This is
best revealed in the singlon- and doublon-resolved imbal-
ance traces [Fig. 2(b)]. Starting from a period-two CDW
with Ið0Þ ¼ 1, there is only one correlated tunneling
process governed by T̂3, that can initiate the dynamics
[schematics in Fig. 1(c)]. For pure singlon initial states
this process is energetically suppressed by the effective on
site interaction energy Ũ, since in the large-tilt limit
Jð3Þ=Ũ ≃ ðJ=ΔÞ2 ≪ 1. The presence of doublons, however,
renders this process resonant, which is expected to relax the
CDW on a timescale governed by the hopping rate Jð3Þ.
Indeed we find that while the singlon imbalance IS remains
stable even for mixed initial states, there is a pronounced
decrease of the doublon imbalance ID. This is due to T̂3

[Fig. 1(c)], which leads to a fast rearrangement of doublons
between even and odd lattice sites on a timescale

(a)

(b)

(c) (d)

FIG. 2. Effective Hamiltonian dynamics for Δ ≫ jUj; J. (a) Im-
balance time trace for singlon (nD ≃ 0) and mixed ½nD ¼ 0.28ð2Þ�
CDW initial states for Δ=J ¼ 8.0ð2Þ, U=J ¼ 2.7ð2Þ, and δΔ ¼
0.048J [resonant Rabi frequency Ω0 ¼ 85ð1Þ kHz]. (b) Singlon-
and doublon-resolved imbalance for the mixed initial state ½nD ¼
0.28ð2Þ� for the same parameters. The lines in (a) and (b) are
time-averaged TEBD simulations with L ¼ 101 lattice sites with
the exact (dashed, transparent lines) and the effective model (solid
lines) including a hole fraction of 20% (comparable to Ref. [54]).
The dashed vertical line shows the effective timescale 1=ð2πJð3ÞÞ.
Experimental data points are averaged 10 times, and error bars are
the standard error of the mean (SEM). (c) Relative tilt difference
δΔ as a function of the resonant Rabi frequency Ω0 in the
presence of the RF dressing field. The solid line is a fit of the
analytic model defined in Eq. (S4). (d) Steady-state imbalance
averaged over ten data points between 67τ and 80τ as a function
of the tilt difference between both spins for Δ=J ¼ 8.0ð2Þ,
U=J ¼ 2.7ð2Þ, and nD ¼ 0.47ð4Þ. Solid lines of the same color
as the data points are TEBD simulations with the exact Ham-
iltonian [Eq. (1)] on 101 lattice sites, nD ¼ 0.46 and a hole
fraction of 20% (TEBD simulations in all panels include
averaging over the spatial distribution of δΔ). See Table S1 in
Ref. [33] for numerical details.
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1=ð2πJð3ÞÞ ≃ 24τ, while keeping the singlon configura-
tion fixed.
Experimentally, we further explore the effect of SU(2)

symmetry breaking on the observed singlon- and doublon-
resolved steady-state values by tuning the tilt difference δΔ
[Fig. 2(d)]. We consider the regime J > jΔ̃↑ − Δ̃↓j, where
the perturbative description [Eq. (2)] remains valid. For
jΔ̃↑ − Δ̃↓j > 0, the relevant process enabled by T̂3 is
energetically detuned even in the presence of doublons,
and we expect relaxation to be strongly suppressed for
jΔ̃↑ − Δ̃↓j > Jð3Þ. This is supported by the observed
dependence of the doublon dynamics on the tilt difference.
The signal obtained from the singlons on the other hand
shows no significant dependence. For jΔ̃↑ − Δ̃↓j > Jð3Þ

there is an intuitive description of the doublon steady-state
imbalance in terms of a Wannier-Stark localized doublon-
hole pair, which agrees well with the numerical simulations
[33]. While the general trend observed in the experiment is
reproduced by TEBD simulations, there is a systematic
deviation for large δΔ, which we attribute to technical
heating induced by the transverse lattice laser beams, that
mostly affects large imbalance values and mixed initial
states.
The tilted 1D Fermi-Hubbard model exhibits rich

nonergodic phenomena depending on its microscopic
parameters, including emergent Hilbert-space fragmenta-
tion and quantum scars. We study the doublon-dependent
dynamics over a wide range of parameters by measuring
the intermediate-time steady-state imbalance as a function
of the Hubbard interaction strength for Δ̃↑ ≃ Δ̃↓ [Fig. 3
(a)]. We find that pure singlon initial states show no
significant dependence. Initial states with doublons on the
other hand, show a strong interaction as well as doublon-
number dependent behavior, in particular near resonances
between the tilt and interaction energy [55]. Intuitively,
one may expect that away from the dipole-conserving
regime (Δ ≫ J; jUj) the tilted Fermi-Hubbard model
is ergodic due to the many resonances between the
interaction U and the tilt energy Δ. Surprisingly, we
find that the intermediate-time steady state persists over
large parameter ranges. Indeed, strongly fragmented
Hamiltonians have been derived for special resonant
points in the parameter space: jUj ≃ 2Δ [33] and
jUj ≃ Δ [56].
On the double-tilt resonance (jUj ≃ 2Δ) fragmentation is

due to the conservation of dipole moment and doublon
number: ΔP̂þU

P
i n̂i;↑n̂i;↓. As before we compare

the dynamics of initial states with and without doublons
[Fig. 3(b)]. We find a large reduction of the steady-state
imbalance for nD > 0, similar to the results shown in
Fig. 2(a). However, unlike in the previous regime, the
singlon- and doublon-resolved imbalance time traces
exhibit similar dynamics, as expected based on the micro-
scopic processes of the effective Hamiltonian.

The fragmented structure of the many-body Hilbert
space [Fig. 1(b)] naturally calls for a modified definition
of ETH, where thermalization is defined not only with
respect to a symmetry sector S but also to a particular
fragment K (also known as Krylov-restricted thermaliza-
tion). Within this modified framework the usual character-
istics for identifying nonergodic behavior within a fragment
apply [25,57]. In this Letter, we have studied the inter-
mediate-time steady-state imbalance as a function of the
fraction of doublons in the initial state in two regimes,
where emergent fragmented models exist: the regime Δ ≫
J; jUj [Fig. 4(a)] and the double-tilt resonance, where jUj ≃
2Δ [Fig. 4(b)]. Note that initial states with different nD
belong to different symmetry sectors S. In both regimes
numerical simulations based on the effective Hamiltonian
indicate that the steady-state value Ī decreases with
increasing doublon fraction (for nD < 0.5), as confirmed
by our experimental results. The system further relaxes to a

(a)

(b)

FIG. 3. Doublon-dependent dynamics for various interaction
strengths and Δ=J ¼ 8.0ð2Þ. (a) Steady-state singlon and dou-
blon imbalance for nD ¼ 0.47ð4Þ and δΔ ¼ 0.048J averaged
over t ∈ ½67τ; 80τ�. For comparison we also show the singlon
initial state (nD ≃ 0). The dashed vertical lines and the gray-
shaded area highlight different regimes, where fragmented
models have been found (main text). Data points contain eight
averages over five points in time. Error bars are the SEM.
(b) Imbalance time traces at the resonance U ¼ 14.7ð2ÞJ ≃ 2Δ
for a singlon initial state and with doublon fraction nD ¼ 0.47ð4Þ.
The resonance is chosen as the local minimum of ĪS in (a) as
indicated by the vertical dashed line. Error bars denote the SEM
after ten averages. The lines represent time-averaged TEBD
simulations of the effective (solid) and the exact Hamiltonian
(dashed, transparent) for L ¼ 51, nD ¼ 0.46, and a hole fraction
of 20% (See Table S1 in the Supplemental Material [33] for
numerical details).
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finite value in contrast to ergodic systems thermalizing to
infinite temperature within the symmetry sector S, where
Ið∞Þ ¼ 0. Moreover, the steady-state value Ī does not
agree with the infinite-temperature prediction for thermal-
ization within the corresponding fragments (blue curve).
Thus, in both regimes the numerical calculation (red curve)
as well as the experimental data points indicate that
the system does not thermalize to an infinite-temperature
state up to 140τ. We emphasize that in general the
dynamics within one fragment can be further constrained
and exhibit nonergodic behavior [25], so aprioriwe do not
know if the system would display thermal behavior
even within this subspace. For instance, additional con-
straints have recently been identified in the resonant regime
jUj ≃ Δ [56].
In conclusion, we have demonstrated that the tilted

Fermi-Hubbard model constitutes an experimentally acces-
sible platform to study the intriguing properties of Hilbert-
space fragmentation. Even for intermediate values of the tilt
as studied in this Letter, the dynamics is well captured
by effective perturbative Hamiltonians that support the
phenomenon of fragmentation. We have studied non-
equilibrium dynamics in two specific regimes, where
fragmentation has been shown theoretically (Δ ≫ J; jUj
and the resonant regime jUj ≃ 2Δ). At the same time we
find no experimental evidence for ergodic behavior away
from these perturbative limits as long as Δ is significant

compared with J. We further demonstrate that the
observed dependence of the dynamics on the number of
doublons in the initial state is directly related to the
microscopic processes of the effective Hamiltonian. It
will be interesting to further systematically explore ther-
malization within individual fragments for the various
different parameter regimes of the tilted Fermi-Hubbard
model. Moreover, to reveal the fragmented nature of the
spectrum more directly, one could further look at the
thermalization of different initial states within the same
symmetry sector S. Moreover, at the resonance jUj ≃ Δ it
was found that additional constraints result in scarring
[56], which highlights the potential of this experimental
platform for studying the interplay of both phenomena.
Additionally, it is expected that higher-order terms in the
perturbative expansion will generally lead to thermal-
ization. However, because of the small amplitude of the
higher-order terms even weak disorder or inhomogeneities
can render these terms inefficient, which results in an
interesting interplay between thermalization and localiza-
tion connecting to the phenomenon of Stark-MBL [58,59].
The RF-dressing technique may further pave the way
toward the implementation of effective spin models via
precise control over the tilt difference. Intriguingly, by
extending our system to 2D, we should be able to connect
our studies to the emergence of hydrodynamic behavior
[60] and potentially realize higher-dimensional models
with multipole moment conservation [24,59].
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