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As the number of hadrons has increased, at-
tempts have multiplied to enlarge the under-
lying group structure governing the strong in-
teractions of these particles. In view of the
complications involved in mixing the proper
orthochronous Lorentz group and/or the dis-
crete Lorentz transformations (parity P and
time reversa. l T) with the internal symmetry
groups (isospin I, hypercharge Y, and baryon
number B), this question was initially approached
by enlarging the internal group structure while
keeping the Lorentz groups inviolate. Such an
approach implied that one could hope to estab-
lish correlations among hadrons with different
values of I, Y, and 8, but with identical values
of spin and parity. The success of broken SU(3)
symmetry seemed to justify this more conser-
vative approach and some authors are now
searching for an underlying group structure
higher than SU(3) for the internal symmetries.
It seems probable, however, that a, truly uni-
fied theory of hadrons, on the group-theoretic
level, will relate hadron multiplets with dif-
ferent spins and/or parities as well as with
different values of their internal quantum num-
bers. Such relations can only be predicted if
one finds the larger mixed Lorentz-internal
symmetry group which is broken in a well-
defined way to yield as a subgroup the direct
product of the Lorentz and internal symmetry
groups which we now use to classify particles.

Assuming that the more ambitious program
just sketched may succeed (this may be the
case not at all or only in a limited sense),
there still remains the very difficult problem
of finding the correct large mixed group. In
order to restrict the possible choices, it would
be helpful to utilize some sort of model in the
same way in which the symmetrical Sakata
model was employed to identify the SU(3) group

and to select the proper symmetry-breaking
terms. %e believe that a very useful probe
of mixed group symmetries is the model based
on a triplet of "basic" fields interacting via
a four-fermion interaction. (We shall reserve
the term "basic" field for a massless' Dirac
four-component field and refer to the model
as a whole as the three-field model. ) The
choice of three "basic" fields is not new; in-
deed, some years ago Thirring' showed that
at least three Weyl (two-component massless)
fields are required to take account of the inter-
nal quantum numbers, I, Y, and B for the ha-
drons and that six Weyl fields (equivalent to
three "basic" fields) are needed in order to
obtain the multiplicative constants associated
with the discrete transformations P, T, and
C (C is charge conjugation). Moreover, short-
ly thereafter, we extended Thirring's argument
and demonstrated~ that there is an internal group
structure underlying the three-field model which
is of an even higher symmetry than contemplated
by Thirring, the particular higher symmetry
group depending on the choice of the four-fer-
mion interaction

Specifically, we proved in our 1961 paper
that if g& (p=1, 2, 3) are three "basic" fields
and g& is decomposed into the positive and
negative (two-component) chirality projections
(1 ~ Y )p, respectively, then one finds the high-5
er symmetry groups listed in Table I. Here,
R(6) is the rotation group of six dimensions,
U(n) is the unitary group of n dimensions and
USp(6) is the unitary symplectic group of six
dimensions; the 8', group is the direct product
of two U(3) groups with U(3)'+' and U(3)' ' re-

Table I. p5 diagonalization.

Four-fermion interaction Higher symmetry group

Scalar (S) or pseudoscalar (P)
Vector (V)

Axial vector (A)
Te11sor

R(6)
Tt, = V(3)(+' U(3)'-&

U(6)
USp(6)
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ferring to the positive and negative chiral pro-
jections of the g's, respectively. ' We see from
Table I that the three-field model, within the
framework of y, diagonalization, gives us a
choice of four possible higher symmetry groups:
R(6), W„U(6), and USp(6).

While the properties of all four of these groups
have been discussed, attention has been focused
on the W3 group. This is the smallest group
in which the parity (a discrete I.orentz trans-
formation) and the internal symmetry groups
are mixed in a well-defined way and which im-
plies a V interaction. ' By making explicit use
of the three-field vector model, it was possible
to prescribe the tensorial behavior of the in-
teractions which successively break first W,
and then U(3) symmetry and thereby (1) derive
mass relations among unitary meson multiplets
of opposite parity, (2) specify the normal or
abnormal CP quantum numbers associated with
a given representation of mesons within the
W, group, and (3) work out a theory of baryons.
A gratifying feature of this approach was the
essential agreement between the results ob-
tained with the simple three-field vector model
and those derived by Gell-Mann' in a more
indirect fashion.

Now while the predictions of the 8', group
are of considerable interest and worthy of ex-
perimental check, the W, group (as well as
the other groups listed in Table I) were derived
by making a chiral decomposition of the triplet
of "basic" fields (i.e., by choosing y, diagonal).
This implies that one can expect at most a mix-
ing of the parity and the internal symmetry
groups and that the proper orthochronous Lo-
rentz group I.P will still be a factor in the di-
rect product with each of the four groups listed
in Table I. In order to mix I.P with the inter-
nal symmetry groups, we must try another
type of decomposition of the three "basic" fields
(e.g. , diagonalize y4). We report here some
preliminary results and point out the connec-
tion with the recent work of Sakita' and GQrsey
and Radicati7 on combining unitary spin and
ordinary spin within the larger group SU(6).
Vfe believe that our three-field model helps
to clarify both the possibilities and the limita-
tions of the program being pursued by the last-
named authors.

If we re-examine the three-field model from
the point of view of y4 (rather than y, ) diagonal-
ization, we find that Table I is replaced by
Table II. In Table II, the SU(2) group listed

Table II. y4 diagonalization.

Four-fermion interaction

S
I

V andA
T

Higher symmetry group

U(6}(" U(6)(~
U(6) " U(6)"

W'g 8 SU(2)
U(3) c) SU(2)

as a factor for the V, A, and T interactions
refers to the ordinary spin rotation group and
these interactions will not be considered fur-
ther here. The U(6) groups listed for the S
and P interactions have a different meaning
from the U(6) group listed in Table I (for the
A interaction) and will be discussed.

Define the y~ projections of the three "basic"
fields g& (p, =1,2, 3) by y&= q(1+y4)g& and

$& = &(l-y4)g&, and use the representation
in which y4=(o o). The S interaction becomes

3
H'(S) =g P fd'x(q y )(q y )

V=

x(y +y —( +$ ).
V V V V

(la)

If we now write

(~ply

and define

ILLi 3A, " = jd x rp . (x)y .(x),
vj pi vj

a .
" = Jd xg, (x)~ .(x) (f, j=1,2),

vj

[B .",S ]=6 6 B"-6 "6 . a . , (2b)
vj '

p/ v j pl p l vj

(2c)

The relations (2a)-(2c) imply that A~ ~~ and
8 are the generators of a U(6) group. ThePl Vj

next step is to define two six-component spinors

then it follows from the commutation relations
for spinor fields that

[A .",A ')= 6 6.'A "'-6 "6 'A . ', (2a)
vj ' Pl v j Pl P l vj
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by

@11

121

@31

@32

Inserting (3) into (la)

~11

&31

we obtain

H (S) =~ flax(e* e =-' =).(C* C .=-* =). .(4)S

where C l"' satisfy the commutation relationsVj
(2a) and (2b). Equation (7) can be rewritten in
the suggestive form (see below)

C," =~+ (o).. fd xq (x)op (x),
vj ~ aji- ]LL a va=1

where

o = ((x, 1) (a = 1, 2, 3, 4).a (6)

Evidently, H'(S) is invariant under two inde-
pendent six-dimensional unitary transforma-
tions

C)- U1C, U1 U1=1;

—U2, U~ U2 —1,

(»)
(6b)

3
fd3 (@xIg+ i

~ is~ i)

)((y t4(p I
$ IW$ I)

V V V V

where we have defined y ' = 2 '"(cp +i( ),
$&'=2 "

(y& i&&) Co—mpari. son of (la) and
(6) shows immediately that the underlying group
structure for the I' interaction is the same as
for the S interaction with different definitions
for the U(6) groups [this is why we have used
U(6)"' and U(6)' ' in Table II rather than U(6)u'
and U(6)&"].

If the S and I' interactions are both present
(an assumption which is made hereafter), then
we have only a common U(6) group with the
generators simply the sums of the previously
defined A and 8 generators, namely

C ."'=A ."'+a ."', (7
Vj Vj Vj

so that the underlying group is U(6)"'8 U(6)"'
(cf. Table II) with the generators A»~' and
B i"' specifying the first and second U(6) groups,
respectively.

It is now easy to derive the underlying group
structure for the P four-fermion interaction.
With y4 diagonal, we define y, by (, ', ) an
hence the I' intera. ction becomes

Thus far we have only considered the group
properties of the four-fermion interaction term
in the total Hamiltonian on the basis of a y4
decomposition of a triplet of "basic" fields.
If we were to allow the common mass term
for the triplet of fields,

3
H(m) =m P fd'x g (x)g (x),

Hp is theref ore a symmetry-breaking term in
U(6) and if we wish to exhibit its tensorial be-
havior in this space, it is convenient to rewrite
(10) in the form

where

(T ) ." =i d'x p .*(x) g, (x)a p.j p,i ~x pja

+t .*(x) y .(x) .
p.i Bx ]LLj

(12)

The usual situation is thus reversed' and it is
the kinematical (rather than the interaction)
part of the total Hamiltonian which reduces
the symmetry of the underlying group. But
this is in the spirit of strong-coupling theory

we would have the interesting result that in-
variance under the common U(6) group would
still be maintained [since H(m) is a scalar];
that is to say, invariance under U(6) is not
affected by assigning an arbitrarily large
(rather than zero) bare mass to the fundamen-
tal triplet. On the other hand, the kinematical
part of the Hamiltonian, H„ is not invariant
under the common U(6) group. This is obvious
when we write Hp in terms of C and ", namely

H =ijrd~x 4*(x)o.=:-(x)+"*(x)&x.=C(x) . (10)
X BX

820
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where we regard H, as a perturbation on [H'(S)
+H'(P) ] (gS, g&

—~); if we choose m in H(m)
as sufficiently large, we can include the (com-
mon) mass term as a part of the unperturbed
Hamiltonian. s

The symmetry-breaking term 80, as given
by (11), has a tensorial behavior in U(6) of the

type similar to the one considered by Sakita7
and Gursey and Radicati, and is capable of
splitting the masses of the J= &+ unitary octet
and the J= z+ unitary decuplet within the 56
baryon representation and the masses of the
J= 0, 1 unitary octets and the J= 1 unitary
singlet within the 35 meson representation (in
second order). (Of course, rigorously speak-
ing, it is the total spin S rather than the total
angular momentum J which enters in our clas-
sification. ) Furthermore, in order to obtain
a mass splitting within a unitary multiplet, it
is natural to assume the presence of the medi-
um-strong symmetry-breaking perturbation

H(m') =m' fd'x g, (x)y, (x),

where m' is of the order of a mass difference
within a unitary multiplet. If one recognizes
that the tensorial behavior of H(m') within U(6)
is T3; ', and treats the effect of this term
together with Ho, one obtains unitary-spin-
spin mass relations of the type found by the
afore-mentioned authors' (provided we assume
the rotational invariance of the theory).

Up to this point, we have shown how the three-
field model with y4 (rather than y, ) diagonaliza-
tion can be used to mix unitary spin and spin
along the lines of the recently proposed gen-
eralization of the %'igner supermultiplet theo-
ry. We shall now employ the same three-field
model to exhibit a fundamental difficulty in this
method of mixing I.& with the internal symme-
try groups, which we believe is intrinsic in
the program of Sakita and Gursey and Radi-
cati. To see this, write down the total angu-
lar momentum for the three fields:

3
J= P fd'xg *(x)[~~a+(xxp)]g (x). (14)

It is easy to show that J does not commute with
the generators C» &' of the U(6) group [cf. (7) ]
but that it is a part of the modified set of gen-
erators D ~~ defined byvj

3
D, = P (o ) . . fd'x g (x) [&o +(xxp) ]g (x). (15)

a=1

Indeed, we can express J in terms of D
as follows:

3
J =~(o'). . P D . (a=1, 2, 3).a a ij pj

p, =1
(i6)

*Work supported in part by the U. S. Atomic En-
ergy Commission.

~We shall show below that under certain circum-
stances, the fundamental triplet of fields may pos-
sess a finite mass without destroying the invariance
under a higher symmetry group.

2W. E. Thirring, Nucl. Phys. 10, 97 (1959).
R. E. Marshak and S. Okubo, Nuovo Cimento 19,

1226 (1961).
This F3 group is not to be confused with the S~

group studied recently [cf. J. Schwinger, Phys. Rev.
135, B816 (1964); F. Gursey, T. D. Lee, and M. Nau-
enberg, Phys. Rev. 135, 8467 (1964)], since the par-
ity operation interchanges U(3) +~ and U(3)' [cf.
R. E. Marshak, N. Mukunda, and S. Okubo, Phys.
Rev. (to be published)].

5Actually, one can include an A interaction with-
out losing %3 invariance [since Tt'3 is a subgroup of
U(6)i.

8M. Gell-Mann [Phys. Rev. 125, 1067 (1962); Phys-
ics 1, 63 (1964)] came upon the SS'3 group by look-
ing for the group generated, under equal-time com-
mutation, of the integrals of the time components
of the vector and axial-vector weak hadron current
octets.

821

Unfortunately, the commutators of D l"'. do
not lead to a closed system so that we are deal-
ing with an infinite-dimensional Lie algebra.
The same remark also applies to a Lie algebra
which is generated from the set C ~' and the
generators of the Lorentz group.

The generators D ~' defined by (15) com-
vj

mute with H, and H(m) but not with the S or
I' interactions. It is possible, however, that
a nonlocal interaction can be written down which
commutes with Dpj I" so that rotational invar-
iance is satisfied (and perhaps even Lorentz
invariance). We would then be compelled to
work with the complicated case of an infinite-
dimensional Lie algebra associated with the
D ~' rather than with the more tractable

vg
finite-dimensional Lie algebra associated with
the generators C»i ~. In any case, we have
shown how the three-field model (with y4 diag-
onalization) can produce a mixing of Lp with

the internal symmetry groups at the expense
of enlarging the underlying group to an infinite
number of dimensions. Further uses of the
three-field model as a probe of higher symme-
tries are being investigated.
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7B. Sakita, Phys. Rev. 136, 81756 (1964};F. Gur-
sey, A. Pais, and L. Hadicati, Phys. Rev. Letters
13, 299 (1964}, and earlier papers quoted therein.

In the case of the %3 group, a finite mass destroys
the invariance whereas the kinematical term preserves

it (since the kinematical term is a vector ); this
is why the mass term is treated as a {symmetry-
breaking) perturbation for Tt'3 whereas the kinemat-
ical term is included in the unperturbed Hamiltoni-
an. The situation is now reversed (see below).

E RHA TUM

IONIZED E-AGGREGATE COLOR CENTERS
IN KC1. I. Schneider and Herbert Rabin [Phys.
Rev. Letters 13, 690 (1964)j.

In the first column of page 692, in line 23,
"R-N, " should read "R-E+"


