OPERATION OF A PROTON-SPIN REFRIGERATOR*

K. H. Langley and C. D. Jeffries Department of Physics, University of California, Berkeley, California (Received 30 November 1964)

Using an earlier suggestion^{1,2} we have achieved a polarization p = 10.5% for the protons in a crystal of yttrium ethyl sulfate $Y(C_2H_5SO_4)_3 \cdot 9H_2O$ (YEtSO₄) by simply rotating it in a magnetic field in a liquid-helium bath. Approximately 2% of the yttrium is replaced by paramagnetic Yb^{3+} ions, which behave like electron "spins" with a very anisotropic g factor: $g(\theta = 90^\circ) \ll g(\theta = 0^\circ)$, where θ is the angle between H and the crystal c axis. The Yb^{3+} spin-lattice relaxation rate is very anisotropic: $T_{1e}^{-1} \propto \sin^2\theta \cos^2\theta$. In this solid-state spin refrigerator, the Yb³⁺ spins act as a working substance, cyclically transferring heat from the protons to the bath via the crystal-lattice phonons. In the thermal block diagram of Fig. 1, heat switch S_1 can be considered closed at $\theta = 45^{\circ}$ and open at $\theta = 90^{\circ}$. A rapid rotation of the crystal from 45° to 90° will isentropically lower the Yb³⁺ spin temperature to T_{ρ} $=T[g(90^{\circ})/g(45^{\circ})]$. If $g(90^{\circ})$ is as small as the proton $g_n = 0.003$, rapid proton-Yb³⁺ cross relaxation closes switch S_2 at $\theta = 90^\circ$, cooling the proton spins. After many cycles the proton polarization is enhanced by the factor $g(45^{\circ})/g_{\mu}$, yielding a polarization $p = \tanh[g(45^\circ)\beta H/2kT]$. This method differs from classical adiabatic demagnetization in that the microscopic internal switches are automatically operated by the same external parameter θ which lowers the Yb^{3+} spin temperature. The crystal-lattice phonons are not cooled, remaining at the bath temperature T. Operation of a nuclear-spin refrigerator was first reported by Robinson³ for anisotropic $Ce_2Mg_3(NO_3)_{12} \cdot 24H_2O$.

In our apparatus the crystal is held in a helium bath between magnet poles by a vertical motor-driven shaft. Both the c axis and the field H lie in a horizontal plane. The enhanced proton polarization is measured relative to

F	Proton spins	Cross- relaxation	Yb ³⁺ spins	Electron spin-lattice relaxation	Crystal lattice phonons	Helium bath
	Tn	S ₂	T,	S,	т	т

FIG. 1. Thermal block diagram for spin refrigerator.

the thermal equilibrium value $p_0 = g_n \beta H/2kT$, by means of a fixed vertical nmr coil.

Quantitative operation of the refrigerator clearly depends on $g(\theta)$ and the relaxation rates, which we consider in more detail. The Yb^{3+} free ion ${}^{2}F_{7/2}$ ground multiplet is split into four Kramers' doublets by the ethyl-sulfate crystal field of C_{3h} symmetry. Ytterbium-ethylsulfate susceptibility measurements^{4,5} yield $g_{\parallel} = 3.40, g_{\perp} \approx 0$ for the lowest doublet. The next doublet is at $\Delta = 42 \text{ cm}^{-1.6}$ Weak microwave paramagnetic resonance has also been observed,⁷ yielding g_{\parallel} = 3.35. From these data and an empirical extrapolation procedure⁸ we estimate the crystal-field parameters $A_2^{0}\langle r^2 \rangle$ = 140, $A_4^{0}\langle r^4 \rangle = -68$, $A_6^{0}\langle r^6 \rangle = -29$, $A_6^{6}\langle r^6 \rangle = 410$ cm^{-1} . These yield the doublet wave functions $|\pm a\rangle = |\pm \frac{3}{2}\rangle, \ |\pm b\rangle = -0.27 |\pm \frac{7}{2}\rangle + 0.96 |\pm \frac{5}{2}\rangle, \ |\pm c\rangle$ $= |\mp \frac{1}{2}\rangle$, $|\pm d\rangle = 0.96 |\pm \frac{7}{2}\rangle + 0.27 |\mp \frac{5}{2}\rangle$; the energies are 0, 42, 133, and 263 cm^{-1} , respectively. For the lowest doublet, $|\pm a\rangle$, one calculates $g_{\parallel} = 3.43$, and to first order, $g_{\parallel} = 0$. However, the field admixes $|\pm a\rangle$ with the higher doublets, giving rise to a small third-order Zeeman splitting $W = 1.5 \times 10^{-11} H^3$ Mc/sec, where H is in Oe. At H = 17 kOe we find $W = g_n \beta H$ so that, in effect, $g(90^{\circ}) \approx g_n$; this equality is not critically dependent on H because of finite linewidths. By a previous procedure^{9,10} we calculate the

Yb³⁺ spin-lattice relaxation rate

 $T_{1e}^{-1} = 1.2 \times 10^{-12} H^4 T \sin^2\theta \cos^2\theta + 3.5 \times 10^{11}$

$$\times \exp(-60/T) + 1.73 \times 10^{-3}T^{9} \text{ sec}^{-1}$$

the terms representing the direct, Orbach, and Raman processes. The latter two are in reasonable agreement with the measured values⁵ $T_{1e}^{-1} = 5 \times 10^{11} \exp(-59/T) + 1.55 \times 10^{-2}T^9 \text{ sec}^{-1}$. At lower temperatures the anisotropic direct process should dominate, giving efficient operation of switch S_1 . A higher order calculation of the direct process at $\theta = 90^\circ$ yields $T_{1e}^{-1} = 1.2 \times 10^{-35}H^8T \text{ sec}^{-1}$ which, together with the Raman process, gives a negligible leakage of S_1 when it is open. Although $T_{1e}^{-1}(\theta)$ has not been observed directly, we have measured the proton relaxation rate in 2% Yb in YEtSO₄ at $T = 1.46^\circ$ K, H = 10 kOe, with the results of Fig. 2. For $0 < \theta < 85^\circ$, T_{1n}^{-1} quali-

FIG. 2. Proton relaxation rate T_{1n}^{-1} vs θ in a crystal of 2% Yb in Y(C₂H₅SO₄)₃·9H₂O.

tatively has the form $\sin^2\theta \cos^2\theta$. At 90° a sharp cross-relaxation spike of width $\Delta\theta \approx 1^{\circ}$ is observed, as expected; this corresponds to closing switch S_2 . At $\theta = 45^{\circ}$, the value of T_{1n}^{-1} is reasonably close to the value 2.4 $\times 10^{-2} \sec^{-1}$ calculated using a simple shellof-influence model.^{11,12}

Polarization experiments were performed in the field range 1.4 < H < 21 kOe with various YEtSO₄ crystals containing 0.5%, 2%, and 10% Yb. In a 2% crystal, the time constant for the exponential polarization buildup varied from 100 to 10 sec as rotation speed was varied from 1 to 67 rev/sec. At constant field, the observed enhancement $E = p/p_0$ increased with rotation speed up to the highest speeds available. At constant speed, E has a broad maximum at $H \approx 10$ kOe. The largest enhancement was 165 at $T = 1.62^{\circ}$ K, H = 10.05 kOe, and rotation speed = 67 rev/sec, yielding a polarization of 10.5%. The enhancement is 4.8 times smaller than the ideal value of $g(45^{\circ})/g_n = 790$, but the nuclear polarization is an order of magnitude larger than that observed in (Ce,

 $La)_2Mg_3(NO_3)_{12} \cdot 24H_2O^{3,13,14}$ and $(Cr, Al)_2O_3^{15}$ indicating that Yb, YEtSO, is a rather favorable substance for a proton-spin refrigerator. Calculations show that less than ideal enhancement in our present experiments may be attributed to failure to switch from 45 to 90° in a time short compared to T_{1e} . At higher rotation speeds it is reasonable to expect sizable polarizations, comparable to those obtained by the dynamic microwave method.¹² The spin refrigerator is basically simpler, however, and may have advantages for polarized targets: A highly uniform field is not required; the polarization can be built up in a time $\approx 10 \text{ sec}$, and the crystal then fixed at $\theta = 0^{\circ}$ where the polarization relaxes with the long time constant $T_{1n} \approx 10^4 \text{ sec (cf. Fig. 2.)}$

*Supported in part by the U. S. Atomic Energy Commission and the Office of Naval Research. ¹C. D. Jeffries, Cryogenics <u>3</u>, 41 (1963). ²A. Abragam, Cryogenics <u>3</u>, 42 (1963).

³F. N. H. Robinson, Phys. Letters <u>4</u>, 180 (1963).

⁴A. H. Cooke, F. R. McKim, H. Meyer, and

W. P. Wolf, Phil. Mag. <u>2</u>, 928 (1957). ⁵J. Van den Broek and L. C. Van der Marel, Physica 30. 565 (1964).

⁶E. Y. Wong, J. Chem. Phys. 39, 2781 (1963).

⁷T. J. Schmugge, private communication.

⁸M. J. D. Powell and R. Orbach, Proc. Phys. Soc. (London) <u>78</u>, 753 (1961).

⁹R. Orbach, Proc. Roy. Soc. (London) <u>A264</u>, 458 (1961).

¹⁰P. L. Scott and C. D. Jeffries, Phys. Rev. <u>127</u>, 32 (1962).

¹¹C. D. Jeffries, <u>Dynamic Nuclear Orientation</u>

(Interscience Publishers, Inc., New York, 1963). ¹²T. J. Schmugge and C. D. Jeffries, to be published.

¹³J. Combrisson, J. Ezratty, and A. Abragam, Compt. Rend. <u>257</u>, 3860 (1963).

¹⁴V. I. Lushchykov, B. S. Neganov, L. B. Parfenov, and Yu Taran, to be published.

¹⁵W. G. Clark, G. Feher, and M. Weger, Bull. Am. Phys. Soc. <u>8</u>, 463 (1963).