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FIG. 1. Thermal block diagram for spin refrig-
erator.

Using an earlier suggestion'~' we have
achieved a polarization P = 10.5% for the pro-
tons in a crystal of yttrium ethyl sulfate
Y(C,H,SO,), 9H,O (YEtSO, ) by simply rotating
it in a magnetic field in a liquid-helium bath.
Approximately 2% of the yttrium is replaced
by paramagnetic Yb' ions, which behave like
electron "spins" with a very anisotropic g fac-
tor: g(8 =90'}«g(8 =0'), where 8 is the angle
between H and the crystal c axis. The Yb'+

spin-lattice relaxation rate is very anisotropic:
E1~

' c sin'8 cos'8. In this solid-state spin
refrigerator, the Yb spins act as a working
substance, cyclically transferring heat from
the protons to the bath via the crystal-lattice
phonons. In the thermal block diagram of
Fig. 1, heat switch S, can be considered closed
at 8 = 45' and open at 8 =90'. A rapid rotation
of the crystal from 45' to 90 will isentropi-
cally lower the Yb' spin temperature to Te
= T[g(90')/g(45 }j. If g(90 ) is as small as the
proton gz = 0.003, rapid proton- Yb'+ cross re-
laxation closes switch S, at 8 =90, cooling the
proton spins. After many cycles the proton
polarization is enhanced by the factor g(45 }/g„,
yielding a polarization P = tanh[g(45'}PH/2k T j.
This method differs from classical adiabatic
demagnetization in that the microscopic inter-
nal switches are automatically operated by the
same external parameter 8 which lowers the
Yb'+ spin temperature. The crystaL-lattice
phonons are not cooled, remaining at the bath
temperature T. Operation of a nuclear-spin
refrigerator was first reported by Robinson'
for anisotropic Ce,Mg, (NO, }».24H, O.

In our apparatus the crystal is held in a he-
lium bath between magnet poles by a vertical
motor-driven shaft. Both the c axis and the
field H lie in a horizontal plane. The enhanced
proton polarization is measured relative to

the thermal equilibrium value P, =g~PH/2kT,
by means of a fixed vertical nmr coil.

Quantitative operation of the refrigerator
clearly depends on g(8} and the relaxation rates,
which we consider in more detail. The Yb'+

free ion I"», ground multiplet is split into four
Kramers' doublets by the ethyl-sulfate crys-
tal field of Cy, symmetry. Ytterbium-ethyl-
sulfate susceptibility measurements~~' yield

g
~i

= 3.40, g = 0 for the lowest doublet. The
next doublet is at 6 =42 cm '.' Weak micro-
wave paramagnetic resonance has also been
observed, ' yielding g

i

= 3.35. From these data
and an empirical extrapolation procedure' we
estimate the crystal-field parameters A,o(r')
=140, A, '(r') =-66, A, '(r') = —29, A, '(r') =410
cm '. These yield the doublet wave functions
Isa)= I+2), I+5)=-0.27)+72)+0.96[+2), lac)
= lv';), l*d) =0.961+';)+0.271+',-); the energies
are 0, 42, 133, and 263 cm ', respectively.
For the lowest doublet, I~a), one calculates
g

~i

= 3.43, and to first order, gi = 0. However,
the field admixes i~a) with the higher doublets,
giving rise to a small third-order Zeeman split-
ting W=1.5x10 "H' Mc/sec, where H is in
Oe. At H =17 kOe we find W= g„PH so that,
in effect, g(90') =g~; this equality is not criti-
cally dependent on H because of finite linewidths.

By a previous procedure'~" we calculate the
Yb + spin-lattice relaxation rate

T ' =1.2x10 "H'T sin'8 cos'8+3. 5x10"
le

&&exp(-60/T}+1.73x10 'T' sec

the terms representing the direct, Orbach,
and Raman processes. The latter two are in
reasonable agreement with the measured values'

Tie
' = 5x 10"exp( —59/T) + 1.55 x 10 'T' sec

At lower temperatures the anisotropic direct
process should dominate, giving efficient op-
eration of switch S] A higher order calcula-
tion of the direct process at 8 =90 yields
T1e ' = 1.2 x10 ' H T sec ' which, together
with the Raman process, gives a negligible
leakage of S, when it is open. Although Tle '(8)
has not been observed directly, we have mea-
sured the proton relaxation rate in 2'P() Yb in
YEtSO, at T =1.46 K, H =10 kOe, with the re-
sults of Fig. 2. For 0(8&85, T1&

' quali-
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FIG. 2. Proton relaxation rate Ty„vs 8 in a
crystal of 2% Yb in Y(C~H&SO4)3'9H20.

I

90

La),Mg, (NO, )» 24H, O'~ "~"and (Cr, Al), O„"
indicating that Yb, YEtSO, is a rather favor-
able substance for a proton-spin refrigerator.
Calculations show that less than ideal enhance-
ment in our present experiments may be at-
tributed to failure to switch from 45 to 90' in
a time short compared to T1e. At higher ro-
tation speeds it is reasonable to expect sizable
polarizations, comparable to those obtained
by the dynamic microwave method. " The spin
refrigerator is basically simpler, however,
and may have advantages for polarized targets:
A highly uniform field is not required; the po-
larization can be built up in a time =10 sec,
and the crystal then fixed at 8 = 0' where the
polarization relaxes with the long time constant
Tl„=10' sec (cf. Fig. 2.)

tatively has the form sin'6I cos'6I. At 90' a
sharp cross-relaxation spike of width 56
=1' is observed, as expected; this corresponds
to closing switch S,. At 6I =45', the value of
T1„'is reasonably close to the value 2.4
x10 ' sec ' calculated using a simple shell-
of-influence model. "y"

Polarization experiments were performed
in the field range 1.4(B & 21 kOe with various
YEtSO» crystals containing 0.5%, 2%, and
10% Yb. In a 2/o crystal, the time constant
for the exponential polarization buildup varied
from 100 to 10 sec as rotation speed was varied
from 1 to 67 rev/sec. At constant field, the
observed enhancement E =P/Po increased with
rotation speed up to the highest speeds avail-
able. At constant speed, F. has a broad maxi-
mum at 8 = 10 kOe. The largest enhancement
was 165 at T =1.62 K, H =10.05 kOe, and rota-
tion speed = 67 rev/sec, yielding a polarization
of 10.5/&. The enhancement is 4.8 times small-
er than the ideal value of g(45')/g„= 790, but
the nuclear polarization is an order of magni-
tude larger than that observed in (Ce,
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