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In a recent series of publications, ' 4 a gen-
eral "bootstrap" theory of octet enhancement
in the strong, electromagnetic, and (parity-
conserving) weak violations of SU(3) symme-
try has been proposed. The theory was suc-
cessfully applied4 to the strong and electromag-
netic mass splittings in the &+ octet and the
&+ decuplet of baryons.

In the present Letter we apply similar boot-
strap techniques to the separate problem of
the parity-nonconserving weak interactions.
The particular case considered here is nonlep-
tonic hyperon decay. We find, neglecting strong
and electromagnetic violations of SU(3), that
the parity-nonconserving BBII couplings (B is
the baryon octet, II is the pseudoscalar octet)
satisfy

s(z, ') =0,

S(:- ) =(S(A ), S(Z ) =(z)"'(2&- )S(A ),

s(:-,') = -(s(A, ), s(z,+) = -(g)"'(2E-I)s(A,); (I)

where S(Z++), for example, is the S-wave am-
plitude' for Z+-n+ v+ and S(Z,+) is the corre-
sponding amplitude for Z+- ~ +P. The coeffi-
cient $ in (1) is a known function, to be deter-
mined below, which depends only on the F/D
ratio x of the strong BBII coupling. A number
of arguments suggest'~7 A. =

~ to &', with X in
this range we find that $ varies smoothly be-
tween 1.5 and 1.8. These relations, which
should hold to within -20%%uz, are independent
of any assumptions (including CP invariance)
about the transformation properties of the weak
interactions. Moreover, if we assume that
the par ity-nonconserving weak interaction has
only 1, 8, and 27 components, with charge
conjugation properties correctly described by
Cabibbo's theory (note that this theory con-
serves CP), we find that the S-wave amplitudes
transform mainly like an octet. This means,
of course, that the amplitudes S(AD) and S(A ),
S(:- ) and S(:"0 ), etc. , are related by the
j ~ (

=
& ru].e.""Note that the ) gg(= ~ rule adds

only one relationship to the predictions of Eq. (1).

Using the currently available data on lifetimes
and polarizations, Stevenson et al.' have deduced
a tentative set of amplitudes for the nonlepton-
ic hyperon decays. There are seven observable
parity-nonconserving amplitudes. The ) M (

= ~
rule provides three familiar relations among
these quantities. In Eq. (1) we have predictions
for three further ratios among the four remain-
ing independent amplitudes. Our predictions
are in good agreement with the S-wave ampli-
tudes of Stevenson et al. The prediction of
Eq. (1) that the decay Z+ n+v-+ is pure P wave
(rather than pure S) has not yet been tested di-
rectly, but polarization measurements may
settle this question in the near future.

Now let us see how these results are derived.
To see what bootstrap theory has to do with
weak interactions, consider the nucleon as a
pion-nucleon bound state. Neglecting the par-
ity-nonconserving weak interaction, the nu-
cleon would be a purely P-wave ~N state, but
when the weak interaction is included the nu-
cleon picks up a small 8-wave component. The
amount of 8 wave in the nucleon state then gives
the parity-nonconserving part of the AN cou-
pling. Now in a theory where the nucleon is
composite, this S-wave piece of the nucleon
state is determined by the parity-nonconserv-
ing part of the "potential" which acts between
a pion and a nucleon. Since nucleon exchange
is an important piece of this potential, the
parity-nonconserving ~NN coupling will react
on itself, so the problem has a self-consisten-
cy or bootstrap aspect. However, the bootstrap
is not the whole story here. There are some
direct weak-interaction effects, such as inter-
mediate vector boson exchange (if it exists),
which also contribute to the parity-nonconserv-
ing part of the mN potential. These parts of
the potential are not determined by bootstrap
requirements and must be taken as given —we
call them the driving terms, D. It is the driv-
ing terms which determine the overall scale
of the parity-nonconserving effects.

In general, if we take the coupling at the
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vertex B~BJIlk, i,j,k =1, , 8, to be (ysgijk
+ 6g; k), where g is the strong SU(3)-symme-
tric'~ coupling and 5g is a small parity-non-
conserving piece, then, working to first order
in the parity-nonconserving weak interaction,
the bootstrap requirements will provide rela-
tions like

5g. ,
= A. . . , , ,hg. . .+ ~ ~ ~ +D . (2)ijk'

Equation (2) is simpler than the correspond-
ing relations for parity-conserving coupling
shifts in several important respects: (i) Since,
as in Schrodinger theory, the parity-noncon-
serving weak interaction is "off-diagonal" and

can produce no mass shifts in lowest order, ' ~

there are no mass-shift terms on the right side
of Eq. (2). (ii) From more detailed dynamical
considerations, to be discussed below, we find
that the shifts in BBII couplings are very near-
ly decoupled from the other parity-nonconserv-
ing couplings between strongly interacting par-
ticles.

Equation (2) can be greatly simplified if we

use the fact that A,jI;ijiI is invariant under
SU(3). Following the general methods given
in reference 3, we first note that in SU(3) 6g,jk
belongs to the product representation 8 8(8 8.
Thus we can relabel 5g by 5g& „] where N = 1,
8, 27, ~ -, runs over all the distinct irreducible
representations contained in 8 8 8, n is the
component of the representation, and P is an
index (to be specified later) which distinguishes
between different representations with the same
dimension. Similarly, we change the labels
on the driving term to D& „I . Then, since

the A matrix conserves SU(3), Eq. (2) becomes' '

(3)

or

where A~"' is independent of n. Note that
this equation is similar to those which appeared
in previous work on the baryon and decuplet
mass splittings'&4 —again we look for eigenval-
ues of A& which are near one. Clearly, if A~
has an eigenvalue near unity, the component
of 5g& ~ lying along the associated eigenvec-

p Pl

tor will be preferentially enhanced. By study-
ing the enhanced eigenvector, we can find ra-
tios among the amplitudes without having to
explicitly calculate the hard-to-treat driving
terms.

The A matrix can be calculated with the S-
matrix perturbation theory which has been dis-
cussed elsewhere. ~ In outline, the calculation
proceeds as follows. %'e consider baryons as
bound states in the IIB channel. The parity-
nonconserving BBII coupling 5g will then ap-
pear as a factor in the residue of the baryon
poles in the (parity-nonconserving) partial-wave
amplitude 5T,

& y~ for the scattering process
J= ~+ (& wave) Bills —J= g~ (S wave) Bkiif.
Using the partial-wave expansion given by Singh, "
one finds, with a suitable normalization for 5T,
that the direct channel baryon pole has the form
pxg, xj-5gxkf/(W-M), where W is the total

c.m. energy and M is the baryon mass. Appli-
cation of the methods of reference 3 then gives

1 [X (W')5T (W')Y . (W')]i, xy xy, zu zu, jk
W'-M

xyzu I.

jk ijk

Y . (W') =[D (W')D (M)]zu, jA — — zu, jk'

X. (W') = lim P g. (W M) [D (W')D '(W-)] (4)

where D~ is the strong-interaction denominator matrix" for IIB scattering in the J= q+ state (note
that D+ ' is singular at W=M) and the contour L runs clockwise around the left cuts in 5T. Note
that since gijk is SU(3) symmetric, g' is independent of i Now, acc.ording to reference 4, if the
baryons are in fact composite objects, '4 then the dispersion integral in Eq. (4) should converge rap-
idly and we need only keep the nearest singularities in 5T. Since we are only interested in the sin-
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gularities of 5T that lie near TV=M, we can
set D (W') =D (M) and make a linear approx-
imation" for D+ which yields

ijI, i jh AA
-'x iix jjx (6)

Before proceeding with the analysis of Eq. (6),
let us recall our previous remark that the other
parity-nonconserving corrections to the cou-
plings of strongly interacting particles wi)l
have a small effect on 5g. To see why this is
so, we note that in the low-energy region where
static kinematics are valid, the s-channel scat-
tering cosH~ is equal to the u-channel angle
cosH~, "which implies that a P- to S-wave tran-
sition in the u channel crosses only to a P-
to S-wave transition in the s channel. Thus,
only u-channel processes which connect P to
8 waves can contribute to the nearby part of
the left-hand cut in our problem. This means
that 8 exchange will contribute but ~3+ decuplet
exchange, which appears a.s a P- to D-wave
transltlon, will not. '

Returning to the analysis of Eq. (6), we first
switch to the N, n, P representation of Eq. (3).
%e choose the previously unspecified index
l3 such that for a given SU(3) symmetry viola-
tion N, n at the BBII vertex, P runs over the
independent irreducible representations of BB.
For example, for N =1, 13 runs over the 8& and

8~ BB states since only these states can com-
bine with the II octet to make an SU(3) singlet,
whereas for N = 8, P runs over all the BB states
since any one of them can combine with the 0
supermultiplet to make a.n octet. The results
of evaluating Eq. (6) in this representation are
listed in Table I." Note the remarkable fea-
tures that A&~~ is essentially diagonal in P
and 8' and is independent" of N (recall, how-
ever, that for a given N, only certain P are
allowed by SU(3) considerations. As we shall
see below, charge conjugation and SU(3) prop-
erties of certain theories may further restrict
the P's which appear in the driving term).

X. (W ) =(W -~). (5)
zu, jk zj uk' i, xy ixy

Finally, to obtain the A matrix, we need the
nearby ("shortcut") singularity in 5T associ-
ated with baryon exchange, and a simple cal-
culation shows that this can be approximated
by the pole +„5g«,~@~&/(W-M). Then, in-
serting our B-exchange pole into (4) and using
(5), one finds

which varies from 0.67 to 0.82 as ~ goes from
-,' to &. The associated eigenvector is 5g& „~
=R(x)5g~ „6& where R(x) = [q-e(x)](5+9x')
x (3ku 5) '. The enhancement of nonleptonic
decays, caused by the factor [(1-e(a)] ', is
evidently of order 3 to 5 in the amplitude, or
10 to 25 in the decay rate.

Since this particular eigenvalue remains close
to unity and the others are so far from unity,
we expect that for a given N or n, the dominant
terms in 5g will be egg „~and 5g~ „~and
the ratio between these terms will be roughly
that given above. A straightforward calcula-
tion'0 then gives the result of Eq. (1) with $
= [5'"-R(A.) )/[5'"+ R(A) ].

So far we have shown that 5g& „' is enhanced,
where N can be any of the SU(3) symmetry vio-
lations 1, ~8, 8+, 10, 10*, or 27. The ques-
tion of which N's actually appear in the driving
terms can only be answered in a more specific
theory. To see how this goes, let us examine
some SU(3)-charge conjugation properties of

Table I. This table gives the PP' dependence of
the matrix A@@ defined in the text. In this par-
ticular case, the A matrix is independent of A and
A. is the I'/D ratio for the strong interaction SBIl
couplings.

10

8 0

8 0

10 0

10* 0

27 0

0
3+ 9~

10+ 18k,
3E5X

5+ 9~

0
3v'5A,

5+ 9A,

1
5+ 9A.

1
5+ 9A,

One feature of Table I is that the diagonal
element (eigenvalue) A" is (in this approxima-
tion) always equal to unity. However, a cou-
pling 5g& „' cannot contribute to the strange-
ness-changing decays, so we need not consider
this particular eigenvalue. For X in the usual
range X =

& to ~, the only other eigenvalue which
is close to one comes from the two-by-two
matrix connecting 8z and ~8. This particular
eigenvalue is

9x'+ 1+(16+180&')"'()=
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the terms D& 8a and D& „~s which drive the
p Pl

enhanced eigenvector. The BB-octet states
~8 and 8z with J=O have 6=+1." The II octet
also has 6=+1. The coupling of II to the en-
hanced BB octet then has 8 =+1 for the symme-
tric combinations ¹ 1, 8&, and 27, and 6 = -1
for the antisymmetric combination 8~, while
10 and 10*can be combined into two orthogo-
nal states with 6 =+1 and -1, respectively. Thus
for example, in Cabibbo's theory where the
parity-nonconserving driving terms have N

=1, 8, and 27 and 8=-1, only the octet viola, —

tion N =~8 can drive the enhanced eigenvector,
and the resulting hyperon decay a.mplitudes
will obey the I AI I,= & rule.

In conclusion, let us turn from strangeness-
changing to strangeness-conserving couplings,
which, while not observed via baryon decays,
may be of interest in connection with parity-
nonconserving forces in nuclear physics. ' The
strangeness-conserving coupling 5g, 3 will be
enhanced by the same factor [1-e(X)f ' that
enhanced the strangeness-changing coupling

6g, ,'. The stra. ngeness-conserving coupling
5g, ,' is also associated with an eigenvalue
near one, but the driving term for this coupling
requires a parity nonconservation with N = 8,
C =+1 which is not present in the Cabibbo theo-
ry. More detailed implications of octet enhance-
ment for parity-nonconserving forces in nuclear
physics have been discussed in reference 1.
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