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FIG. 2. (a) Dependence of spatial period Az on
magnetic field 8 in the shadow for different pres-
sures, obstacles, and gases. Diamonds: 5 milli-
torr, 12-mm disc, mercury; crosses: 0.2 milli-
torr, 0.5-mm rod, mercury; circles: 0.1 millitorr,
12-mm disc, mercury; bars: 5 millitorr, 1-mm
rod, neon. (b) Probe current-voltage curves. In-
verted triangles: z =8 mm, T~ =5.3 eV, T+=3.5
eV; triangles: z =12 mm, Tg =3.8 eV, T~=5.2 eV.

electrons which lie within a small range of ax-
ial speed. An analysis of the particle dynamics
for such a case has been carried out by Al'pert,
Gurevich, and Pitaevskii3 in connection with
the ion density distribution in satellite wakes
in the ionosphere. Application of this analysis
to the Vf measurements shows good agreement
with respect to the phase difference of the curves

inside and outside the shadow, the spatial peri-
od A~, and the dependence of the amplitude
and shape of the Vf peaks on B.

The curves of the macroscopic plasma param-
eters Vp, ne, and TS are less clearly under-
stood. At values of z exceeding 8 mm, which
is roughly the helical pitch of electrons with

v~ equal to the thermal speed, the curves have
a spatial period of 15 mm. They may be con-
sidered to represent a wave propagating in the
negative z direction, or at on acute angle to
this direction, in the frame of reference mov-
ing with the electron drift velocity. It is noted
that this spatial period is equal to the helical
pitch of electrons which lie in the T~ group
mentioned above. Such a wave could be sus-
tained by either the electron drift energy or
by the interaction of the excess group of elec-
trons with the remainder of the plasma after
phase selection by the obstacle.

A mor e detailed report is to be submitted
for publication.

The author is much indebted to Dr. R. J. Bick-
erton and Dr. P. F. Little for helpful discus-
sions.

~On leave of absence from the Department of Phys-
ics, Imperial College, London, England.

~J. E. Allen and F. Magistrelli, Nature 194, 1167
{1962).2¹A. Vorob'eva, Yu. M. Kagan, and V. M. Mi-
lenin, Zh. Tekhn. Fiz. 33, 571 (1963) ftranslation:
Soviet Phys. —Tech. Phys. 8, 423 (1963)].

SYa. L. Al'pert, A. V. Gurevich, and L. P. Pitaev-
skii, Usp. Fiz. Nauk 79, 23 (1963) ftranslation:
Soviet Phys. -Usp. 6, 13 (1963)].
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In the deduction, from first principles, of
the nonequilibrium properties of dense media
(for example, the density dependence of ther-
mal conductivity and viscosity), three-body
contributions play an essential role. ' In view
of the difficulties encountered in calculating
rigorously the three-body effects in general
approaches, ' the insight to be gained from a
specific molecular model is needed. There-
fore, the orbits of three identical, classical,

rigid, elastic spheres in otherwise empty flat
Euclidean three-dimensional space have been
analyzed, and the phase-space domains, 1„,
that correspond to the occurrence of n succes-
sive binary collisions have been determined.
The result that I, is nonempty has been re-
cently demonstrated by an example. s In this
paper we state precisely, and illustrate, the
form of I 4 and describe a rigorous proof that
I', is empty. (The rather intricate demonstra-
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FIG. 1. Configuration at the conclusion of the
second collision in an &e sequence.

tions are being prepared for publication. ) Hence
we may state that we have established the nec-
essary and sufficient conditions for the occur-
rence of four collisions and we have proved
that five are impossible.

First, we describe a method of classifying
collision sequences. Since a given pair of
spheres cannot be involved in two successive
collisions, any sequence of three collisions
among three spheres belongs to one of two
cia,sees: (i) The pair involved in the third col-
lision is the same as that involved in the first,
or (ii) all three pairs are involved in the se-
quence. %'e designate the first class by the
symbol r (for rebound) and the second by c
(for cyclic). In any sequence of four collisions,
the first three must belong to one of these
classes and, similarly, the last three of the
four must belong to one of them. It follows
that a sequence of four can be described, in-
sofar as ordering is concerned, by rv, ~c, c~,
or cc, where the first letter in each pair re-
fers to the first three collisions and the sec-
ond letter to the last three of the four. Simi-
lar reasoning leads to the description of a five-
collision sequence by one of the eight symbols
~vr, x~c, , ccc.

The previously announced four-collision se-
quence' is an example of rc. The conditions
under which xc can occur are described in
terms of the configuration of the spheres just
at the conclusion of the second collision. With
the spheres numbered such that the succession
of collisions is (1, 2) -(2, 3)-(1, 2) -(1,3), the
reference frame is taken such that sphere 2
is stationary at the origin. The position Bnd
velocity of sphere 1 are denoted by x and u, ',

those of sphere 3 by k and u, (Fig. 1). The
diameter of the spheres is taken as the unit
of length so Ik I

= 1 and I x I
~ 1.

Evidently x and u, must be so related that 7
is real and nonnegative. %e deduce that

x.u, ( —[u '(x -1)]'"
With x fixed, (1) says that, for the third col-
lision to occur, u, must lie in a half-cone.
The notation v CC(p, q, a) is introduced to de-
note those vectors v whose endpoints lie in
the interior of the half-cone with apex at p
and generators tangent to the sphere whose
center is at q and whose radius is a. Using
this notation, the necessary and sufficient
conditions (obtained in a straightforward way
by following the dynamics of the collisions
and motion) for the four collisions to occur
in the order specified are

u, -(k us)k C C (0, x, 1); (2)

k u, &0; (3)

u, C C(0, -x, 1); (4)

usC C(b v 'a T '), T & 0,

C C(b, a+ 5, 1), 7. = 0, (5)

where a=k'-k and b=u, -(k'u, )k. Algebrai-
cally, conditions (2)-(5) constitute a system
of coupled nonlinear inequalities [exemplified
by (1) of which (4) is a restatement] defining
that part of I';, characterized by rc, which
we designate I'(rc). But (2)-(5) cannot be
called a description of I'(rc); as they stand,
it is not even clear that the domain is non-
empty.

To clarify the situation, we must be able
to decouple the conditions so that the inde-
pendent variables can be chosen in such an
order that the restrictions on each depend
only on those already chosen. This can be done
as follows: Given (4), conditions (2) and (3)
can be shown to be equivalent to the pair

kCC(0, -x, 1), (6)

(~)k us~

where n is the larger root of

[(x k)'-x~+1]o.'-2[(x k)(x u, )-k u, (x -1)]a
+ (x.u, )'-u, '(x~-1) = 0.

Then, using k' to denote the position of sphere
1 relative to sphere 2 at the third collision,
we have k' = x+ u, ~, where v is the time inter-
val between the second and third collisions
and so is given by

u, 'T = -x u, -[(x u, )'-u, '(x -1)]'".

f44
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CCondjtions (4) and (6) guarantee that n is real
and positive. ] It is now possible to pick any x
(with ix) ) 1), then u, and k satisfying (4) and

(6), respectively, and then us satisfying (7) to
establish the first three collisions. But for
the fourth collision, us must also satisfy (5),
and, in general, the regions in u, space defined
by (5) and (7) do not intersect. It can be shown
that (5) and (7) are compatible if and only if
x, u„and k are such that

k. b& n, (8)
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FIG. 2. Cross sections of the (P, y, &,8) space
(y =0).

in addition to satisfying (4) and (6).
But now we must consider the compatibility

of (4), (6), and (8). It is found that for ix I

)W2, they are incompatible, but for any x such
that 1 ~ )x i & v2, there exist choices of u, and
k that satisfy all three conditions. We have
no simple description of the domain in the (u„k)
space thus defined for each such x, but we can
exhibit a sample of it.

Let P and y be the angles that k and u„re-
spectively, make with -x, and y the angle be-
tween the two planes generated by x and u, and

by x and k; and let 8 be the half-angle of C(0,
-x, 1) so that sin8= ix i

'. Then conditions (4),
(6), and (8) can be expressed in terms of these
four angles (since iu, i drops out). Three cross
sections (obtained by setting y =0 and 8 =90',
75', and 60') calculated from the (8, y, p, 8)
domain so defined are shown in Fig. 2.

To recapitulate, a point in the domain whose

cross section is illustrated in Fig. 2 defines,
apart from orientation, values of x, u„and
k such that the compatibility of (5) and (7) is
assured; and choosing a value of u, in the trun-
cated half-cone defined by (5) and (7) finishes
specification of a point in I'(rc).

Turning now to the case rr, we find a com-
pletely analogous set of equations but the do-
main defined by the analogs of (4), (6), and
(8) turns out to be empty. In other words, rr
is impossible. A somewhat different formula-
tion leads to a proof that cc is impossible. By
time-reversal considerations, each instance
of rc gives an instance of cr and vice versa.
Thus we have reached full knowledge of I,.

In two special cases the maximum number
of collisions is three: (i) for one-dimensional
motion, 4 and (ii) for point particles. '

With r~ and cc ruled out, the only possibili-
ties remaining for five collisions are rcr and
ere. We have found proofs that they are both
impossible. Hence I, is empty. Detailed dem-
onstrations of the foregoing assertions will be
published soon. Numerical calculations were
made which helped guide the construction of
the proofs and corroborated the results.

We are deeply indebted to %. Thurston for
his timely discovery of a four-collision sequence
and to G. E. Uhlenbeck and A. I enard for stim-
ulating discussions.

*This work was sponsored by the U. S. Air Force
Office of Scientific Research of the Office of Aero-
space Research under Contract No. AF49(638)-1224.
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