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ion current with the anode at +23 cm where
the flutes obviously dominate the transport.
The lower photo shows the same currents for
the anode at -23 cm where the radial diffusion
appears to be the predominant transport mech-
anism. The amplitude of the few remaining
fluctuations is reduced an additional order
of magnitude by operation in the single-coil
field.
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Several publications have appeared in recent
months, concerning the determination of some
of the statistical properties of fluctuating light
beams from photoelectric measurements. ' '
This problem is of particular interest at pres-
ent in connection with attempts to understand
the behavior of laser light. Some of these pub-
lications deal with questions of stability of the
oscillations and with some of the statistical
moments of the associated probability distri-
butions. It is the purpose of this note to show
that it is possible, in principle, to determine
the complete probability density of the light
intensity from the knowledge of the statistical
distribution of photoelectrons released from
a photosensitive surface on which the light is
incident.

Consider a plane, quasimonochromatic sta-
tionary light wave incident normally on a photo-
detector. If l(t) represents the light intensity
at time t (measured in photon numbers per sec-
ond), then under usual experimental conditions,
the probability p(n) that n photoelectrons will
be released in a time interval of duration T
is given by Mandel's formula5 ~

n

p(n)=-p(n, T)=, e P(W)dW,
0

where

W=-W(T) = J l(t')dt'.T
(2)

In Eq. (1), P(W)dW represents the probability

that the time-integrated intensity 8' will take
on a value in the range between 8' and TV+dW,
and a represents the photoefficiency of the de-
tector. The physical meaning of Eq. (1) is
clear: It shows that the probability P(n) is the
average of a Poisson distribution with param-
eter o.R' over the ensemble of the incident light
wave. Formula (1) is a "generalized analog"
of a formula found by Bothe" already in 1927,
in connection with his derivation of the Bose-
Einstein distribution. Very recently Ghiel-
metti" showed that Formula, (1) has an exact
counterpart, in the quantum statistics of bosons.
Since Eq. (1) expresses P(n) as a linear trans-
form of P(W) with a "Poisson kernel, "we may
say that P(n) is the Poisson transform of P(W).

We will now show that the Poisson transform
may be inverted, i.e. , that for any given p(n)
one can find a unique P(W) which satisfies
Eq. (1). This assertion implies that the proba-
bility P(W) which governs the fluctuations of
the (time-integrated) light intensity may be
determined from the knowledge of the distribu-
tion of the photoelectric counts.

I.et

P(x) = f e P(W)e dW

Then by the Fourier inversion formula,

alV
P(W)= F(x)e " dx.
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Now from (3) we have, at least formally,

o n=O

n=o"' 0

or, using (1),

considered, the probability density of V may
be assumed to be independent of the phase of
V and one then finds, by using the fact that
I(f) = V*(t)V(f) and changing variables, that

P(V( ) V()) „-P()
The probability density of V(~) alone is obtained
by integrating (9) with respect to V( ) (-~& V(
& ~). Since I= V(~) +V(f) this leads to the
expression'

(5)
(r) 1 P(I)dI

w (r) 2 1/2' (io)

Thus the required probability density p(W) may
be obtained from the knowledge of p(n) (g = 0,
1, 2, .~ ~), by first evaluating F (x) from (5) and
then evaluating (4).

The function E(x) is evidently closly related
to the characteristic function

C(x) = j e P(W)dW (6

of P(W). Since C(x) contains Fourier compo-
nents of non-negative frequencies only, it is
by a well-known theorem" the limit on the real
axis of a function C(e) = C(x+iy) which is analy-
tic and regular in the upper ha, lf (y & 0) of the
complex z plane. The analytic continuation of
C(x) into the upper half-plane may be obtained
by simply replacing x by e in (6). On compar-
ing the resulting expression with (3) we see
that

W=IT (r«T ).
C

(8)

Equation (4) then yields the probability density
of the instantaneous light intensity I. Further,
if V(r)(f) represents the fluctuating real field
(for simplicity assumed to be linearly polar-
ized) and V(t) = V(~)(t)+iV(~)(t) is the associ-
ated analytic signal, "~' one may readily derive
expressions for the probability densities of V
and V(~, respectively: For a stationary quasi-
monochromatic field, such as is being here

706

P(x) =C(x+ia).

Several comments seem appropriate: In the
first place, if the basic time interval T is short
compared with the coherence time T~ of the
light (a, condition that may readily be satisfied
with laser light), I(f) may be taken as constant
under the integral in Eq. (2), so that one then
has

where the integration on the right extends from
Vb')2 t:o

To illustrate our results, let us consider
two simple examples".

(1) Suppose that p(n) is given by the Bose-
Einstein distribution

p(n) =n /(n. +1)

Then (5) becomes

E(x) =(n 1+-in /xa) ',
a,nd (4) gives

P(W) =W e

(12)

where W =n/a. Hence P(W) is now an exponen-
tial distribution. Further, if the distribution
(11) corresponds to measurements for which
T «Te, one has from (8) and (13)

~)
--1 -I/I

where I = W/T =n/Ta Moreove. r, if the light
is linearly polarized, one obtains from (10)
and (i4)

(14)

P(n) =n e /n!.
Equation (5) now gives

F (x) = exp~[(ix/n)-1 j),
and (4) shows that in this case

P(W) =6(W-W),

(16)

(18)

(15)

Equation (15) shows that the probability den-
sity of V(r) is now a Gaussian distribution with
zero mean and variance —,'I.

(2) As a second example, suppose that the
photoelectric counts are governed by the Pois-
son distribution
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where gf =n/n and 5 is the Dirac delta function.
This result implies that the distribution of the
photoelectrons is strictly Poissonian (pure
shot noise), with parameter n, if and only if
the incident light is perfectly stabilized in the
sense that 8' does not fluctuate at all, but has
a constant value W=n/n. It should be noted
that perfect stability in this sense does not
imply a complete absence of fluctuations in
the incident light. For S' depends only on the
behavior of the intensity I= VV*, and so sta-
bilization of 8' does not preclude fluctuations
of the phase of V. If the Poisson distribution
(16) refers to results of measurements for
which T «Tc, one now also has

P (I) = 5 Q-I ),

where again T= tk/T =n/Ta Furth. er, if the
field is also linearly polarized, one obtains
from (10) and (19)

j7(P' ) (I P( )
)

/ 'f
[
y(+)

[ I /2

(19)

=0 y 1 2
if IV I&I (20)

It is evident from our analysis that experi-
mental determination of the statistical distri-
bution of photoelectrons in photoelectric light-
detection experiments may be used to derive
the probability densities that govern the fluc-
tuations of such light. This result should prove
of particular interest in connection vrith laser
light as it could be used to decide which of the
proposed descriptions of its statistical behav-
ior is in best agreement with results of photo-
electric measurements. "
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