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With an ever increasing internal-symmetry
group for hadrons, the possibility of combin-
ing internal symmetry and space-time sym-
metry has become all the more appealing.
Recent attempts!? in this direction have, how-
ever, been confined to essentially nonrelativ-
istic situations where the spin degrees of free-
dom can be regarded as internal. The group
that has emerged from these investigations
as a likely global group is SU(6). Following
up this line of thought, we wish to extend these
results to relativistic quantum field theory.
We shall produce a chain of symmetries cul-
minating in Wy=U(6)® U(6) that arises natural-
ly in this case. In contradistinction to sym-
metries previously considered in physics, the
largest members of this chain are intrinsical-
ly broken. In other words, there does not exist
a total Lagrangian that possesses W, symme-
try, since the kinetic energy and mass terms
will automatically break it. The symmetry
will show up only in the interaction term and
will consequently make sense in terms of a
strong-coupling limit.

Let us consider a triplet of spin-3 fermions
(quarks),® and let y%(x), i=1,2,3, be the cor-
responding Dirac fields.* Introducing their
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left- and right-handed Weyl components R and L,

(525 (00 o

we consider the following 72-parameter group
of transformations:

L-(1+ia, O“A.)L,
i i

R—-(1+ia. Yo"\ )R, (2
A z

where 0#=(1,03); 2;, i=0,1,---,8, are the

3 x3 Hermitean matrices defined by Gell-Mann®
[xo=(§'?1], and a;, are complex parameters.
The generators of the transformations (2) can
be written as

)\i’ U#V}\i) 17/57\2-y (3)
in the space of Dirac spinors. The matrices
in (3) are reducible; the irreducible compo-
nents are

O N., £i0 X.. (4)

wi [T

The generators with upper (lower) sign act
on L (R). This makes clear that the transfor-
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mation group (2) is the complexification of
U(6) —the full linear group in six dimensions
GL(6). Finite-dimensional representations
of GL(6) of physical interest can be classified
by a method similar to the ‘“unitary trick” of
Weyl for the Lorentz group.! We form out of
the set (3) the generators

1 =
2(117/5)2“)\2., Eu (1,023,031,012), (5)

which span the group Wy=U(6)® U(6). The gen-
erators in (5) induce on R and L the infinitesi-
mal transformations

R-(1+ia ‘o™ )R,
m i

L~(1-i8 ‘o)L,
m i

where « % and B“i are real.

A parity-conserving, Lorentz-invariant four-
Fermion interaction which is invariant under
GL(6) is’

£ =17 — K - - — —
7= 81300 M AP0 XY+ IN YN+ Py ) Yy o) )
=2¢6 {R'o \.LR o AL
v ue 17
+L%0 A.RL"0 A R}. (6)
oz Vi

The equal-time commutation relations satis-
fied by the field y are not in general invariant
under GL(6), and therefore it cannot be an in-
variance of the underlying Hilbert space. We
consider it rather to be a dynamical symmetry
possessed by the interaction Lagrangian and
physical matrix elements in some approxima-
tion.

Another interaction Lagrangian invariant
under GL(6) is

2=y P90 =Ty rp v 0k )

There is a U(6) subgroup of GL(6) obtained
by taking the a; real. This is the group con-
sidered in reference 1. Both interaction La-
grangians (6) and (7) are invariant under this
subgroup, which leaves the canonical commu-
tation relations invariant.

The complete Lagrangian is the sum of kinet-
ic energy, mass, and interaction terms:

L=L _+L +L,

K M I
Ly = iy 8y,
Ly -myip.

Since the four-momentum has four components,
while GL(6) [or, for that matter, any of its
SU(6) subgroups] has no four-dimensional rep-
resentation, it is clear that there is no possi-
bility of making £x GL(6)-invariant (a similar
argument applies to £p;). Thus the only term
of £ that is GL(6) invariant is £;7. If in some
strong-coupling sense £;7 > £ +£,,, then it
is fair to claim that £ exhibits intrinsically
broken GL(6) invariance. Before we analyze
in more detail this intrinsic symmetry break-
ing, let us give the representations to which
the quarks and their bilinear covariants belong.
The quarks form the representation® (1, 6)
®(6, 1) of Wq, and the bilinear covariants

Jy (L+ygh 9 and Py (1-yg)r,y form, respec-
tively, the representations (35,1)®(1,1) and
(1,35)@(1,1). Finally, aoﬂ XD DYN Y DPy g ;9
together form (6*, 6)@ (6, 6*{. The particle
contents of all these representations are given
in Table I. It is important to remember that
irreducible representations of W, do not, in
general, have definite Lorentz-transforma-
tion properties. In order to build up objects
with well-defined transformation properties
under the Lorentz group, one must consider
reducible representations of Wy. There is
some latitude in choosing the representations

Table I. Spin—parity—unitary-spin content of representations of Wj.

Representation of Wy

Spin, parity, unitary-spin dimensionality

W Ny

(35,1)@(1,35)@(1, 1)@(1,1)
(6*,6)D(6, 6*)

(6,1)®(1,6)

(56, 1)®(1,56)

a*s@a~, @1, nea, newet,8)@0=,8)@0, ne©n,1)
1*,8)@a -, 8)e0t, n®a~, 1@, 8)® (0, 8)@ (0", @0, 1)

#*,3)
¢ eeE, 10
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in which one places the baryons. One obvious
candidate is (56, 1)®(1, 56).

We now return to the intrinsic symmetry
breaking, coming from the kinetic energy
and mass terms in £. Their transformation
properties (as members of incomplete W,
multiplets) are easily found to be (35, 1)
®(1,35) and (6*, 6)®(6,6%*). We are treating
the kinetic energy and mass terms as pertur-
bations on an otherwise symmetric Lagran-
gian. Such a procedure is nonconventional
(i.e., not describable in terms of the usual
Feynman diagrams), but if this feature is ig-
nored, one can proceed formally with group-
theoretical arguments. It is simplest to think
of the symmetry-breaking terms in the lan-
guage of spurions, with the spurions possess-
ing the requisite W, transformation proper-
ties. Spurions can only contribute in pairs
to self-mass terms, with the pairs necessar-
ily possessing the quantum numbers of the
vacuum. These spurion pairs are of particu-
lar interest when classified according to the
U(6) subgroup of W mentioned above (a; m
real). For the breakdown of this U(6) sym-
metry our spurion-pair mechanism implies
that to lowest order the symmetry-breaking
terms in the mass formulas transform like
members of the 35-, 189-, and 405-dimen-
sional representation, as assumed by Bég
and Singh.?

Because of this subgroup most of the non-
relativistic results!® based on U(6) can be ob-
tained from W,. However, W, predicts a
super-supermultiplet structure on top of
U(6), most characteristically the axial-vector
and scalar mesons listed in Table I. Corre-
spondingly, more general mass formulas can
be derived on the basis of W, symmetry.

It is of interest to find the “would-be-con-
served” currents of our model, and to calcu-
late their (nonvanishing) divergences.!! For
example, corresponding to the parameter
a;9 there is a current

L 12 6L 1 1+y.\ ¢
7, _——Gaiz, ) —§¢[yu, 031]+<—‘2—‘>7\ ¥,
and its divergence

. i2_ oL - 1+‘y 7
all]li ‘Gai2‘¢(7331‘7133)( D) Ay

- i
+mMyP0og,Ysh Yo
We then ascribe in the sense of a Goldberger-
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Treiman argument particles to these nonvan-
ishing divergences of currents. In this way
we may introduce a nonet each of vector,
axial-vector, and pseudoscalar (the last
arising from the noninvariant mass term)
mesons, that form together an incomplete
We multiplet. The coupling of these particles
to other physical states may be viewed as an
effect of W, breakdown.

In conclusion we wish to point out that Wq
seems to be the natural group of hadrons.!?
One crucial test of its approximate validity
would be the experimental discovery of the
1* and 0" mesons it predicts.
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The following footnote to the title was omitted:
“*Work supported in part by the National Sci-
ence Foundation and the U. S. Atomic Energy

Commission.”

In addition we would like to call attention
to the neutron-deuteron scattering data at
2.45 MeV of J. D. Seagrave and L. Cranberg
[Phys. Rev. 105, 1816 (1957)]. These data are
more accurate and more extensive than the
data with which we compare in Fig. 2. They
agree essentially exactly with our theoretical
curve marked Z =0.0488 over the measured
angles from 25 to 165 degrees.
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