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A solution is given for the temperature and
mean-free-path dependence of the upper crit-
ical field, H~2, of a bulk, type-II superconduc-
tor. Spin paramagnetic effects are omitted
here.

Previously, this calculation has been carried
out in several limiting cases. The Ginzburg-
Landau-Abrikosov-Gor'kov' ' (GLAG) theory,
although applicable for all mean free paths,
l, is restricted to temperatures, T, in the im-
mediate vicinity of the zero-field transition
temperature, Tc. Recently, Maki and de
Gennes' have independently solved for the full
temperature dependence of H2 in the dirty, or
small-l, limit. In addition, Gor'kov' has de-
termined the value of H~2 at zero temperature
for clean (l —~) samples.

%e are concerned exclusively with the crit-
ical field at a second-order transition, where
the superconductor gap function, V(r), is van-
ishing. Thus the analysis may be based upon
a determination of the largest field for which
the linear, homogeneous equation for &(r),
due to Gor'kov, ~ has a nonzero, bounded solu-
tion. This equation may be written in the form

X &(r) =»(& /T)~(r),

where

at the Fermi surface, and we measure temper-
atures and frequencies in energy units. G~H
is the one-electron Green's function in the pres-
ence of both a uniform, static magnetic field,
H, and a particular fixed configuration of im-
purities. The angular brackets in Eq. (3) in-
dicate an averaging over a random ensemble
of impurity distributions.

In the field-free case, Abrikosov and Gor'kov'&'

have discussed the impurity-averaging proce-
dure. They show that to lowest order in the
impurity concentration, a physically valid lim-
it, one need only take account of unlinked chains
and ladders in a diagrammatic development.
In the presence of the magnetic field, their
procedure need be modified only by allowing
the field to affect electron propagation between
independent impurity-scattering events, but
not during a scattering event, which is of very
short range.

For actual experiments, it is almost always
true that the spacing of the Landau levels in
the field is small compared to their thermal
and impurity broadening. In this semiclassi-
cal limit, the magnetic field enters the expres-
sion for the Green's function merely via a phase
factor.

In this manner it is found that the operator
of Eq. (2) may be written

and

a(r) —= fd'r'X(r, r')a(r'), (2) op op
X = Z X

X(r, r')-=Q l2v+ ll '5(r-r')

T
-&(0) (G (r, r')G (r, r')) . (3)

Here ~ =~T(2~+ l), N(0) is the density of states

op
Op

) 2 )) 1 (dH

)l-(s '
/2 T' )l

where &=l/vf, and s&~ p is an integral oper
ator with eigenvalue equation

o T
s y(r) —= d'r'(G (r, r '))(G (r, r')) p(r')

py(r)=s ~q(r)

(6)
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(G~H) is the impurity-averaged, single-particle Green's function,

m ie- r+r' - -, '

. -co lgI
(G (r, r')) = — —,exp —A (r r-')+ i P — ——Ir-r' I

~H ' 2n tr-r'I c 2 I co I f v 2l

Equation (7) can be cast into the gauge-invariant form

T 3 1 2I (d I 1

2v p
d'p , e—xp — — + — exp ( ip-[i&+ (2e/c)A(r)]/ rp(r) = s p(r).

v E (dH

Due to the isotropy of the P integration,
can only be a function of scalar operators.
The only two such independent operators which
can be constructed are

&,-=[i&+2(e/c)A(r)]',

are asymptotic, rather than convergent, series.
Numerical solutions of Eqs. (12-(15) are plot-

ted in Fig. I as a function of reduced temper-
ature, t, for various degrees of purity as giv-
en by the reduced collision frequency,

and

S,=- H [iV+ 2(e/c)A(r)]. (10)
z=(2mT 7.) '=0.882$,/l.c

Hence, the eigenfunctions, y(r), of S~HoP are
independent of co; and the processes of solving
the eigenvalue problem, Eq. (9), and summing
over v, Eqs. (4) and (5), may be reversed.
To obtain the largest field for which a solution
of Eq. (1) exists, the only eigenvalue problem
which need be considered is identical with that
encountered in the GLAG theory; namely, the
simultaneous ground state of the commuting
operators S, and S,. Following Abrikosov, '
the solutions are

y(r) ~ exp {(2eH/c)[ixy —2(x-x,)']),

degenerate with respect to an arbitrary x,.
The corresponding eigenvalue of S~~ p is

The magnetic field units are reduced in such
a way that the plot is of an effective Ginzburg-
Landau parameter, '

x (T, x)—=H (T, z)/AH (T),c2 c

where H (T) is the thermodynamic critical field.
The usual Ginzburg-Landau parameter, ~, is
obtained as K = Kl(Tc, X).

A more detailed derivation of Eqs. (12)-(15),
together with a comparison of our results with
the large amount of experimental data now avail-
able, will be submitted for publication else-
where.
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Finally, the desired critical field Hc2 is giv-
en implicitly as a solution of
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Note that expansions of I(n) in powers of n,
which yields the T —Tc limit of the GLAG the-
ory, ' ~ and also the dirty limit (small ),'~'r

FIG. 1. The effective Ginzburg-Landau parameter,
reduced by its value at T~, as a function of reduced
temperature, for various degrees of purity.
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Gallium iron oxide, Ga2 ~Fe&03 with 0.7
~x & 1.4, was first prepared by Remeika and
shown to be ferromagnetic and piezoelectric. '
This is the only crystal known to possess both
properties. Recently, Rado' has observed a
magnetoelectric effect in Ga2 Fe 03. He
showed this effect to be larger by an order of
magnitude than that in any previously measured
material, and also that the induced polariza-
tion is normal to the applied field. On the ba-
sis of a complete determination' of the crystal
structure and of new magnetization measure-
ments, we propose a magnetic-structure model
that clarifies the results of previous studies. 'y~~'

We also suggest that the piezoelectricity orig-
inates in the oxygen-atom arrangement, in
contrast to the ferromagnetism which is pri-
marily due to the cations.

The unit cell and space group of Ga2 Fe 03
have been reported by Wood. ' The space group
is C2 '-Pc21n, with eight formula weights per
unit cell. The arrangement of cations is shown
in Fig. 1, the oxygens being omitted from the
figure for clarity. Each of the four cations in
the asymmetric unit (e.g. , within the area
bounded by a/4 and b), at site positions with
point symmetry C,-1, are related to three other
equivalent cations in the unit cell by the space-
group symmetry. The ferromagnetic axis is
c, and the polar axis is b (i.e. , i c). If we as-
sume no integral change in cell size and no loss
of symmetry between the chemical and mag-
netic cells, the most probable Shubnikov groups
for the magnetic unit cell are then Pe2,n,
Pc2y'n ', Pc '2,n ', and Pc'2y'n . The first of
these is antiferromagnetic; the other three
are ferromagnetic, with a spontaneous mo-
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FIG. 1. Schematic arrangement of cations and
magnetic spins in Ga& ~Fe 03. Spin components
in the ab plane are represented by arrows, along
c by plus signs.

ment allowed along the a, b, and c axes, re-
spectively. Hence, the most likely Shubnikov

group is Pc'2g n. Rado' has independently ar-
rived at the similar conclusion that the mag-
netic point group is 2'm'm. This should be
written m'2'm in terms of Wood's assignment'
of axes, which we have retained. The magnet-
ic space group Pc'2, 'n requires the spin com-
ponents in the ab plane to be antiparallel, with
all the c-axis components parallel (for a given
set of symmetry-related sites).

The magnetic moment per ferric ion, for
stoichiometric GaFeO„ is reported' to be
0.76 p.&. Assuming an S-state ion, with the
spin at Fe(l) making an angle 8„and that at
Fe(2) a,n angle 8, with the c axis, then

';(cos8, +cos8,) = 0.76.
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