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MIXED-STATE SPECIFIC HEAT OF VANADIUM AT VERY LOW TEMPERATURES*

P. H. Keesom and Ray Radebaugh
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(Received 21 October 1964)

We have measured the specific heat of a pure
sample of vanadium' (resistivity ratio 150) in
the superconductive, normal, and mixed states.
The specific heat in the mixed state at very low
temperatures can be represented by a sum of
two terms, one linear and one cubic in temper-
ature. The results are in quantitative agree-
ment with a proposal of Rosenblum and Cardona. '
They proposed the existence of normal-like re-
gions in the mixed state which occupy a frac-
tion H/Hc2(T) of the material. This follows
from calculations by Caroli, de Gennes, and
Matricon, ' who show that near an Abrikosov
vortex line excitations have a very small ener-
gy gap. They conclude that each vortex line
is equivalent to a normal region of radius $.
The results for the three different states are
plotted in Fig. 1. The data for normal and su-
perconductive states can be represented by the
following formulas:

C =yT+nT3
n

(measured in a field of 14 kOe),

C =ayT exp( bT /T)+a-T' (H =0 and T& ~T ),
C C C

with

y =9.92 mJ/moledeg, a =0.03 mJ/moledeg,

which corresponds to 8, =399 K and is identical
with results from the velocity of sound'; T .
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C =yT(1-t 2)(1+3t2),
em S (2)

where t = T/Tc and ts = Ts/Tc. To compare
with expression (1) the lattice term should be
added to (2). The comparison can be improved
by including deviations from the parabolic law.
Below 2'K, the reduced critical field can be
written as k =1-1.1t'. Substituting the experi-
mental numbers given above we get

C = 8.ST +1 04T' mJ/mole . deg.
m

=5.37'K, a =7.0'K, and b =1.34 K. The results
are consistent with a second-order transition
and give for H~ at 0 K 1427 Oe.

Results in the mixed state were obtained in
a field of 2700 Oe, which is about twice H (0).
The transition to the normal state is not sharp,
but appears to be second order. If the transi-
tion is idealized, entropy considerations give
for this transition temperature the value T~
=1.76'K. This leads to Hc2/Hc =2.14. The
specific heat in the mixed state below 1.6'K
can be given by

C = 8.8T + 1.1T' m J/mole deg.
m

Rosenblum and Cardona' proposed a formula
for the specific heat of the electrons in the
mixed state. Neglecting the contribution of the
superconductive fraction and assuming the para-
bolic law for the critical fields, their formula
can be reduced to
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The agreement with Eq. (1) is excellent.
Gorter' proposed a formula for the specific

heat in the mixed state at very low temperatures
which is nearly identical with Eq. (2). How-
ever, it includes an additional constant in the
term cubic in temperature. The constant is
expected to be 1.3, which appears to be in agree-
ment with results on niobium. ~ The data for
vanadium require o. = 1.

I

!Q
T [~ K)

I

t0
I

50 40

FIG. 1. Specific heat of vanadium in the normal
and superconductive state and (in the top left corner)
in the mixed state.
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A solution is given for the temperature and
mean-free-path dependence of the upper crit-
ical field, H~2, of a bulk, type-II superconduc-
tor. Spin paramagnetic effects are omitted
here.

Previously, this calculation has been carried
out in several limiting cases. The Ginzburg-
Landau-Abrikosov-Gor'kov' ' (GLAG) theory,
although applicable for all mean free paths,
l, is restricted to temperatures, T, in the im-
mediate vicinity of the zero-field transition
temperature, Tc. Recently, Maki and de
Gennes' have independently solved for the full
temperature dependence of H2 in the dirty, or
small-l, limit. In addition, Gor'kov' has de-
termined the value of H~2 at zero temperature
for clean (l —~) samples.

%e are concerned exclusively with the crit-
ical field at a second-order transition, where
the superconductor gap function, V(r), is van-
ishing. Thus the analysis may be based upon
a determination of the largest field for which
the linear, homogeneous equation for &(r),
due to Gor'kov, ~ has a nonzero, bounded solu-
tion. This equation may be written in the form

X &(r) =»(& /T)~(r),

where

at the Fermi surface, and we measure temper-
atures and frequencies in energy units. G~H
is the one-electron Green's function in the pres-
ence of both a uniform, static magnetic field,
H, and a particular fixed configuration of im-
purities. The angular brackets in Eq. (3) in-
dicate an averaging over a random ensemble
of impurity distributions.

In the field-free case, Abrikosov and Gor'kov'&'

have discussed the impurity-averaging proce-
dure. They show that to lowest order in the
impurity concentration, a physically valid lim-
it, one need only take account of unlinked chains
and ladders in a diagrammatic development.
In the presence of the magnetic field, their
procedure need be modified only by allowing
the field to affect electron propagation between
independent impurity-scattering events, but
not during a scattering event, which is of very
short range.

For actual experiments, it is almost always
true that the spacing of the Landau levels in
the field is small compared to their thermal
and impurity broadening. In this semiclassi-
cal limit, the magnetic field enters the expres-
sion for the Green's function merely via a phase
factor.

In this manner it is found that the operator
of Eq. (2) may be written

and

a(r) —= fd'r'X(r, r')a(r'), (2) op op
X = Z X

X(r, r')-=Q l2v+ ll '5(r-r')

T
-&(0) (G (r, r')G (r, r')) . (3)

Here ~ =~T(2~+ l), N(0) is the density of states
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) 2 )) 1 (dH
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/2 T' )l

where &=l/vf, and s&~ p is an integral oper
ator with eigenvalue equation

o T
s y(r) —= d'r'(G (r, r '))(G (r, r')) p(r')

py(r)=s ~q(r)

(6)


