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A satisfactory account of the short-range
attractive interaction in a two-component high-
temperature plasma requires a quantum-me-
chanical treatment. The inadequacy of the clas-
sical theory is exhibited® by the singular behav-
ior of the electron-ion correlation function for
particle separations less than the Landau length
(=e?/kT).

The purpose of the present note is to outline
a quantum-mechanical analysis of the short-
range part of the electron-ion correlation func-
tion, The starting point of the calculation is
a two-particle Wigner distribution function.

The corresponding radial distribution function

is then written in the form given by Goldberg-

er and Adams.? As expected, it is found that

the finite value of Planck’s constant provides

a natural short-range cutoff for the divergence
appearing in the classical calculation. The
distance at which this effect takes place is on
the order of (IA%)Y3, where I is the Landau length
and A is the thermal de Broglie wavelength.

For a one-component plasma, it has been
shown?® that particle correlations are due to
short-range two-body encounters for particles
closer than the distance 7, = (IL/2)"2, where
! is again the Landau length and L the Debye
length [= (¢T /471ne®)*'?]. For particle separa-
tions greater than 7»,, the correlation becomes
dominated by collective effects. The transition
from two-body to collective interaction may
also be shown to take place at this distance in

a two-component plasma. Since the quantum-
mechanical effects will occur only at distances
much less than 7, only this inner region need
be considered and only a two-particle Wigner
distribution function need be calculated.

Only the radial distribution function, the re-
sult of integrating the Wigner distribution func-
tion over particle momenta, is of interest.
This takes the standard form

nlr) = S (Pe M us(e), 1)

where T is the relative-position vector of the
two particles, B=1/kT, H is the energy oper-
ator for the two-particle system having an in-
teraction potential V(r), and the z,bE(F) are ei-
genfunctions of the operator H. In terms of
plane waves this may be rewritten®*

d% .
n(r)= f@-ﬂ% exp( —p’)d)ﬁ*(r)

Xexpf—(A2V2+U)]¢§(F), (2)

where D is the relative particle momentum
measured in units of (2mkT)Y2, x = (5%/2mkT)"?
is the thermal de Broglie wavelength, and U
=BV.

As shown in reference 2, a sequence of trans-
formations may be employed to simplify Eq. (2).
The first transformation converts Eq. (2) to
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the form
n(r) =172 [ &) exp(-p?)
Xexpl -V + 2ixp,1) Jv,(1), (3)

which has been normalized to reduce to unity
for a perfect gas. The function U is related
to U(r) by

OF, 1)= [ ds, UF-2iAPs,). 4

In Eq. (3), the function v,(1) contains func-
tions of » which are of order A%, As is shown
in reference 2, it is possible to extract from
v,(1) another exponential times a function v,(1)
containing functions of 7 of order A*, and so
on. It is found that the short-range divergence
of the classical theory is eliminated after the
first transformation. Additional quantum cor -
rections to this result will be neglected. The
function v,(1) may, therefore, be set equal to
unity, and Eq. (3) written as

n(r)=1"%2 [d®p exp(-p?) expl - V(F + 2Ap, 1)]. (5)

Evaluating Eq. (4) for the Coulomb potential
V(r)=e,e,/|¥!, one finds

O + 2008, 1)
= —iv{sinh *[cotf + i(a/v) cscB]-sinh~*(cot8)},(6)

where cosO=F-p/7p, v=1/2\p, and a=1/7.
The constant I, which is now equal to e,e,/*T,
may be of either sign. When Egs. (5) and (6)
are combined, the highly transcendental nature
of the result may be eliminated with the help
of the identity

1 /'Z]n

expln sinh_lb] =[b+ (b2 +1) (7)

The angular integration in Eq. (5) is then
found to be amenable to considerable algebra-
ic simplification. After some simple transfor-
mations Eq. (5) may be reduced to the form

- 2z iv
n)=2n=2 [ “ptap exp(~p) = fz *tdt<~t+—z;) ,8)

t+z
n(r) = 8n=Y2 [ “p*dp exp(-p*) ReleH (z,v)],  (9)

where z =1+ia/v, and Re signifies the real
part of the quantity in brackets. The function
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H(z,v) is defined by

¥4

He, )= 2 vy -, (10)

1
For a high-temperature plasma, || is much
larger than A, and since the p integration cuts
off sharply for p>1, only values of v>1 are
important in Eq. (10). It is therefore sufficient
to develop the integral in Eq. (10) into an as-
ymptotic series by partial integration. Retain-
ing only the first term in this expansion yields

iv+1 —iv+2]

He =~ -2 e

For >, a/v is less then unity, although
a*?/v may be large. Writing 2z = exp(Inz) in
Eq. (11), expanding the logarithm in powers
of a/v, and retaining only the first two terms,
one finds

Re[zH(z,v)]:(v/az)e_a sin(a 2/21/). (12)

Since one does not seek detailed information
at distances on the order of A, but merely re-
quires a theory which converges as » =0, this
approximation is adequate.

With this result the p integration in Eq. (9)
is readily performed. The final expression
for the radial distribution function at short dis-
tances is found to be

2y 2

n(r):exp(—;{-—%), ¥ <7,. (13)
The second term in the exponential is inde-

pendent of the sign of 7 and for negative ! it pro-

vides a natural cutoff for small separation dis-

tances. When [/ is negative the maximum value

of n(r) is found to occur at » = (1 7112%)"%, For

¥ >7,, the usual Debye shielding result must,

of course, be used.
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