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CONVERGENT CORRELATION FUNCTION FOR A TWO-COMPONENT PLASMA
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A satisfactory account of the short-range
attractive interaction in a two-component high-
temperature plasma requires a quantum-me-
chanical treatment. The inadequacy of the clas-
sical theory is exhibited by the singular behav-
ior of the electron-ion correlation function for
particle separations less than the Landau length
(= e'/kT).

The purpose of the present note is to outline
a quantum-mechanical analysis of the short-
range part of the electron-ion correlation func-
tion. The starting point of the calculation is
a two-particle Wigner distribution function.
The corresponding radial distribution function
is then written in the form given by Goldberg-
er and Adams. ' As expected, it is found that
the finite value of Planck's constant provides
a natural short-range cutoff for the divergence
appearing in the classical calculation. The
distance at which this effect takes place is on
the order of (lA')"', where l is the Landau length
and A is the thermal de Broglie wavelength.

For a one-component plasma, it has been
shown' that particle correlations are due to
short-range two-body encounters for particles
closer than the distance ra= (U /2), where
f is again the Landau length and I- the Debye
length [= (kT/4ane')"'j. For particle separa-
tions greater than r„ the correlation becomes
dominated by collective effects. The transition
from two-body to collective interaction may
also be shown to take place at this distance in

a two-component plasma. Since the quantum-
mechanical effects will occur only at distances
much less than ~,„only this inner region need
be considered and only a two-particle Wigner
distribution function need be calculated.

Only the radial distribution function, the re-
sult of integrating the Wigner distribution func-
tion over particle momenta, is of interest.
This takes the standard form

n(r) = Q -P*-(r)e P-(r),
k k k

where r is the relative-position vector of the
two particles, P =1/kT, H is the energy oper-
ator for the two-particle system having an in-
teraction potential V(r), and the gk(r) are ei-
genfunctions of the operator H. In terms of
plane waves this may be rewritten'~'

d3
n(r) =,exp( p')q *(r)

xexp[-(A'V'+ U)Ig (r), (2)
p

where p is the relative particle momentum
measured in units of (2rnkT)'", X = (k '/2mkT)"'
is the thermal de Broglie wavelength, and U

= PV.
As shown in reference 2, a sequence of trans-

formations may be employed to simplify Eq. (2).
The first transformation converts Eq. (2) to

683



VOLUME 13, NUMBER 23 PHYSICAL REVIEW LETTERS 7 DECEMBER I'964

the form

n(r) =22 "'fd'|)exp(-p')

xexp[-U(r+2it)p, l)]v, (1}, (3)

H(z, v) is defined by

H(z, v)-=f, „dyy (I y-) (10)

which has been normalized to reduce to unity
for a perfect gas. The function U is related
to V(r) by

v(r„1)= f ds, U(r 2i-xps, ) (4)

exp[nsinh b]=[b+(b +1) ] .
-1 2 1/2 n

The angular integration in Eq. (5) is then
found to be amenable to considerable algebra-
ic simplification. After some simple transfor-
mations Eq. (5) may be reduced to the form

In Eq. (3), the function v, (1) contains func-
tions of r which are of order X'. As is shown
in reference 2, it is possible to extract from
v, (1) another exponential times a function v2(1)
containing functions of r of order A.', and so
on. It is found that the short-range divergence
of the classical theory is eliminated after the
first transformation. Additional quantum cor-
rections to this result will be neglected. The
function v, (1) may, therefore, be set equal to
unity, and Eq. (3) written as

n(r) =22 "'fdspexp(-P ) exp[-U(r+29. p, 1)]. (5)

Evaluating Eq. (4) for the Coulomb potential
&(r) =e2e, /Irl, one finds

'U(r + 2ikp, 1)

= -iv(sinh [cot8+ i(a/v) csc8]-sinh '(cot8)j, (6)

where cos8=r p/rp, v=l/2', and a = l/r
The constant l, which is now equal to e2ez/kT,
may be of either sign. When Eqs. (5) and (6)
are combined, the highly transcendental nature
of the result may be eliminated with the help
of the identity

For a high-temperature plasma, I li is much
larger than A. , and since the P integration cuts
off sharply for P&1, only values of v»1 are
important in Eq. (10). It is therefore sufficient
to develop the integral in Eq. (10) into an as-
ymptotic series by partial integration. Retain-
ing only the first term in this expansion yields

H(z, v)=-(v /a )[z"' -(z+) '"' ].

For r&A, a/v is less then unity, although
a'/v may be large. Writing z = exp(lnz) in

Eq. (11), expanding the logarithm in powers
of a/v, and retaining only the first two terms,
one finds

Re[zH(z, v)] = (v/a )e sin(a /2v).
2 -0 . 2 (12)

Since one does not seek detailed information
at distances on the order of A, but merely re-
quires a theory which eonverges as r -0, this
approximation is adequate.

With this result the P integration in Eq. (9)
is readily performed. The final expression
for the radial distribution function at short dis-
tances is found to be

l2y2
e(r) = exp( ———

4r (13)

The second term in the exponential is inde-
pendent of the sign of l and for negative l it pro-
vides a natural cutoff for small separation dis-
tances. %'hen l is negative the maximum value
of n(r) is found to occur at r =(I ll X')"'. For
r & ro, the usual Debye shielding result must,
of course, be used.

2v

e(r)=2e "'f P'dd exp( P') ftdtl +*-„—(.2)

n(r) = 822-"'f™p'dpexp(-p') Re[zH (z, v)],

where z = 1+ia/v, and Re signifies the real
part of the quantity in brackets. The function
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