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We have studied the known solutions' &' of some
exactly soluble static models of meson-baryon
scattering (to wit: neutral, charged, and sym-
metric scalar, and neutral pseudoscalar theo-
ries in the one-meson approximation) to see
whether any of them possesses bootstrap solu-
tions. We define such a solution to be any solu-
tion of the dispersion equations that satisfies
Levinson's theorem".

a ( )-a (1)=-~b,
Q CV Q'

where 5&(&u) is the phase shift in the channel o,
& is the meson energy, and b~ is the number
of stable particles in the channel n.

All these theories satisfy the intuitive require-
ment for possessing bootstrap solutions: Ex-
change of a particle in the u channel produces
an attractive potential in the s channel. In our
static models, s becomes ~ and u becomes -w.

We try to take into account effects of closed
channels and unknown high-energy behavior by
introducing a cutoff function and arbitrary sub-
tractions in the dispersion relations. The cut-
off function is chosen to be v(&) =x2~/(q2+v2)~,
where q = (&u'-1)"2, so defined that Imq ~ 0 on
the physical sheet of the complex ~ plane, and
t." =0, 1, 2, ~ ~ ~ .

Our results are as follows:
(1) For all of these models no bootstrap solu-

tions exist that satisfy unsubtracted dispersion
relations. Bootstrap solutions do exist that
satisfy subtracted dispersion relations. A sub-
traction can only be made if a cutoff function is
also introduced. It is interesting that these
models differentiate so sharply between cutoff
functions of arbitrary power on the one hand,
and subtractions on the other. This suggests
that the existence and properties of bootstrap
solutions for the complete S matrix must be ex-

where f is the scattering amplitude, g is an
arbitrary positive constant, and

I 2~,r, v((u') (u"-1)'"
&(~)=l - l~'~i d~'[ g2( p2 2 ~ )].

Evidently f/v satisfies a once-subtracted dis-
persion relation, with g acting as the effective
subtraction constant. For g&L(1) there is no
bound state. For g&L(l) there is one bound
state. For g= 0 the bound state is at u = 0. The
solution is labeled by three arbitrary parame-
ters: the cutoff power c ~ 1, the cutoff momen-
tum v &1, and the effective subtraction constant
g-0.

(3) Scattering in the symmetric scalar theory
proceeds through the I=

& and I= ~ channels.
The number of bootstrap solutions satisfying a
once-subtracted dispersion relation is greater
than one. These solutions have either c =2 or
c =1. If we apply the physical requirement that
the meson-baryon coupling constant must not
vanish (i.e., the target baryon must appear as
a bound state in the appropriate channel), then
we must have c = 1, and the bootstrap solution
is unique. The S-matrix elements for that case
are given by

S„,= [B/(B-1)][(B-2)/(B+1)]D,

S, = [8/(B-l)]D, (4)

where

tremely sensitive to the finer details of high-
energy phenomena.

(2) The only bootstrap solution to the charged
scalar theory is equivalent to the neutral scalar
theory (for which there is a unique boostrap solu-
tion):

f(&'P) =f(& p) =v(~)/LZ-f (~)]

B((u) = ~+ i [w
' ln((u + q) —((u/q) P, ] (g, g 0),

(1-iq)(l-iq/K)(1-iq s/, )(1 +iq/s, )
(1 + iq) (1 + iq/z) (1 + iq/s, ) (1-iq/s, )

(1-iq) (1-iq/~) (1-iq/s, )(1 + iq/s, )
(1+iq)(1+iq/e)(1+iq/s )(1-0iq/s, )

(J3, o),

with s =—(1-cu&2)'", where &u& is the unique root of the equation B(v ) =y satisfying the following con-
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ditions: For @=0, either 0&~o&1, or ~o is pure imaginary, ' for y~1, 0&~ &1.
For Po &0 there is a bound state in the I= ~ channel at & =0, which represents the target ba.ryon, and

a bound state in the I= ~ channel at ~ = co, . The respective squared coupling constants are

1 I-s, 1+s, 1

2s2(1+s,)(s,-s,) 1»+s,
(d2(I —S2)(8~+82) K K-S2

They are always positive because 0 & s, & s, & 1.
For Pp &0 there is a bound state in the I= ~ channel at co = 0, and no bound state in the I=

& channel.
The meson-baryon squared coupling constant is in this case

1 1+so 1-sI
(8)

and is again always positive because 0&s, &1,
and uo is real for 0& go& m ', pure imaginary
for P &m

The solution is labeled by two arbitrary pa-
ra, meters: the cutoff momentum ~ &1, and the
effective subtraction constant P, w 0.

(4) Scattering in the neutral pseudoscalar
theory proceeds through the J=

& and J =
& chan-

nels. The number of bootstrap solutions satis-
fying a once-subtracted dispersion relation is
again greater than one. These solutions have
either c = 3 or c = 2. If we again apply the phys-

ical requirement that the meson-baryon coupling
constant must not vanish, and further require
that no bound state can have a smaller mass
than the target baryon (i.e., no inelastic thresh-
old lower than the elastic threshold), then we
must have c = 2, and the bootstrap solution is
unique. The S-matrix elements are given by

S„,= [B/(B-1}][(B-2)/(B+1)]D,

S„,= [B/(B-1)]D,

where

B(~) = &+~[v-'»(~+q)-(~/q')(p, + p, ~')] (p, + p, «0). (10)

The two constants P, and P, are related to each other by a threshold condition given below. The func-
tion D(&u) is a real analytic rational function of q, such that D(&o =1)=1, and }D(&u)I =1 for &u ~ 1. It
is uniquely specified by the requirements that

D(~) have double poles at *f(»'-I)'",
simple poles at all the roots of B(&u) = 0,

simple zeros at all the roots of B(~) =-1.
The threshold condition is

D((u) = 1+O(q'),

which relates Po a,nd P, for a given value of I(..
For all Po, P„and I(.', the target baryon is the
only bound state in the J= ~ channel, and there
are no bound states in the J= &~ channel. The
solution is labeled by two arbitrary parameters:
the cutoff momentum z &1, and the effective

subtraction constant Po (or P,).
The explicit form of D(&u) depends on the lo-

cation of the roots of B(&u) =y, and hence on P~
and P, . For P~) 0, P, ) 0, B(+)=0 has five roots
at 0, +x, ax*, where x is complex; B(u) =-1
has three roots at -ro„y, y*, where 0&~, &1,
and y is complex, with Hey &1. Letting s,
=(I-(u, ')'", q, =(x'-1)'", and q, =(y'-I)'",
we have

1 iq/» ' (I -iq—) (1 + ~q/s, ) (1 + q/q, )(1-q/q, *)(1-q/q, )(1+q/q, ')
( I+ jq/» (I+iq)(1-~q/s, )(1+q/q, ')(I q/q, )(1 q/q-, *)(1+q/-q, )

(12)
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The meson-baryon squared coupling constant is
given by

P 1 1 +

(5) Applying the usual bootstrap philosophy to
these models, we would expect the positions
&~ and squared coupling constants x; of bound

states (or virtual states, or resonances) to be
determined by a set of equations, which for
the case of two bound states (one of them being
the target baryon located at &u, = 0) should be
of the form

f1(~l 2tt ~2t gt

~2 f2(~lt ~2t ~2t gt «) t

Al = Fl(Alt A2t ld2t g, «),

~2 2(~lt ~2t +2t gt «)t (17)

The threshold condition rea.ds

s, '+2Im(q, '-q, ') =1+2«

which, for v-1, approximately reduces to

fl, +0, =~2(1+«-') '.
There is resonance in the J=

& channel rep-
resented by a pole of S„,at ~ = y on the second
Riemann sheet. For ~-1 the pole is near thresh-
old, with position and width given, respectively,
by the approximate expressions

Rey=l+-', (I+« ')

Ds
Imy =—(1+«-')

4

where g is the subtraction consta. nt and I(: the
cutoff momentum. (The mass of the scattered
meson acts a.s a scaling parameter, which is
set equal to unity. ) From (17) we should expect

and X, to be determined up to one arbi-
trary parameter. The results in all the models
studied disagree with this counting. %e may
perhaps understand the nature of this disagree-
ment by considering the present theory as the
limit of a relativistic theory in which the mass
of the target baryon (M) is to be inserted into

Eq. (17) as follows:

M = M+fl(X„A2, lu2t g, «t M),

M + &u2
= M +f2 (A.„A2, e2, g, «, M),

Al = Fl(Alt A2t ltl2tg, «, M),

~2 2(~l t ~2t +2tg t (16)

We see that Eqs. (18) have the correct number
of variables to allow two free parameters. If
now a static limit is to make sense, the func-
tions f and F must be .insensitive to M, and
therefore one of Eqs. (17) must be an identity.

Details of this work will be published else-
where.

This work was supported in part through funds
provided by the U. S. Atomic Energy Commission
under Contract No. AT(30-1)2098.

L. Castillejo, R. H. Dalitz, and F. J. Dyson,
Phys. Rev. 101, 453 (1956).

2G. Wanders, Nuovo Cimento 23, 817 (1962);
K. Wilson, thesis, California Institute of Technology,
1961 (unpublished) .

3N. Levinson, Kgl. Danske Videnskab. Selskab. ,

Mat. -Fys. Medd 25, No. 9 (1949).

SPIN AND UNITARY-SPIN INDEPENDENCE IN A PARAQUARK MODEL OF BARYONS AND MESONS

0. W. Greenberg*
Institute for Advanced Study, Princeton, New Jersey

(Received 27 October 1964)

signer's supermultiplet theory„' transplanted
independently by GGrsey, Pais, and Radicati,
and by Sakita, ' from nuclear-structure phys-
ics to particle-structure physics, has aroused
a good deal of interest recently. In the nuclear
supermultiplet theory, the approximate inde-
pendence of both spin and isospin of those forces
relevant to the energies of certain low-lying
bound states (nuclei) makes it useful to classify
the states according to irreducible represen-
tations of SU(4). Parallel to this, in the par

ticle supermultiplet theory, the possible inde-
pendence of both spin and unitary spin of those
forces relevant to the masses of certain low-
lying bound states (particles) makes it interest-
ing to classify the states a,ccording to irreduc-
ible representations of SU(6). Three results
associated with this SU(6) classification indi-
cate its usefulness: (1) The best known bary-
ons (in particular, the spin-l2 baryon octet
and the spin-2&+ baryon decuplet) are grouped
into a supermultiplet containing 56 particles.
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