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There have been a number of speculations on
the possibility of a symmetry scheme of funda-
mental particles based on the group SU(4).}
These ideas extend the SU(3) symmetry scheme?
in much the same way that the SU(3) scheme ex-
tends the isospin symmetry. It must be stressed,
however, that unlike the search for SU(3) there
is very little if any experimental motivation for
this extension. In view of the success of the em-
pirical SU(3) mass formula,® which says that the
mass splittings transform like the Y =0 isospin-
singlet component of the regular representation
of SU(3), i.e., the 8, it is a natural first guess
to presume that the mass splittings in the SU(4)
scheme transform like a component of the regu-
lar representation of SU(4), i.e., the 15. In the
following, we give the mass formula for an arbi-
trary representation of SU(4) based on the as-
sumption that the mass splittings transform like
a component of the 15. This general result is
greatly simplified by using different SU(3) sub-
groups of SU(4). To emphasize the general use-
fulness of the various subgroups, the electro-
magnetic properties in SU(4) are briefly dis-
cussed also.

Since SU(4) is a group of rank 3, there are
three independent conserved quantum numbers
which we take to be the charge @, the hyper-
charge Y,* and a new quantum number X. (Q is
more convenient than I; for discussing electro-

magnetic interactions.) The 15 contains the fol-
lowing SU(3) submultiplets: a 3 withX=1, a1
and an 8 with X=0, and a 3* with X=-1. The
most general form of the mass splittings con-
tained in the 15 compatible with @, ¥, X, and I
conservation is a superposition of the SU(3) sin-
glet and the isoscalar component of the SU(3) oc-
tet (Q=Y=X=0). [The SU(3) subgroup we refer to
here is the one whose multiplets lie in planes
orthogonal to the direction of the new quantum
number X.]

Consider first the splittings which transform
like the @ =Y =X =0 SU(3) singlet. These do not
give splittings within a given SU(3) multiplet but
do split apart different SU(3) multiplets. Since
the @ =Y =X =0 SU(3) singlet is the component ¥,*
of the traceless tensor zpu" representing the 15,
the general form of these mass splittings for any
SU(4) representation® (L,M, N) is obtained by ap-
plying the Wigner-Eckart theorem for SU(4) to
the matrix element of the component T * of a
traceless tensor T“V . The general form of the
matrix element of the component T * of an arbi-
trary traceless tensor T, in the SU(4) represen-
tation (L, M, N, ) turns out to be
T44=a+bX+c[C2(x)—X2]
vdle,®-sxc, ™ . %%, 1)
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where C, and C, are the Casimir operators of the
SU(3) subgroup orthogonal to the direction of X,
For the SU(3) multiplet (L, M) which lies in the
plane X = L-M they are explicitly given by

C,=L%+ LM +M?+3L + 3M, (2)
and
Ce=(L-M)(2L +M +3)(L +2M +3). 3)

The parameters a, b, ¢, and d depend on the par-
ticular SU(4) representation and, of course, the
space-time properties of the multiplet, e.g., J 7.
A brief derivation of Eq. (1) can be based on the
following theorem: The number of independent
terms in the matrix element of 7,* in the repre-
sentation (L, M, N) is just the number of times
the 15 occurs in the product (L,M,N)®(N,M, L)
and this can be shown to be precisely the number
of the integers L, M, and N which are not zero.®
Consequently, such mass splittings are described
by a maximum of three parameters, and fewer
for certain representations. It follows that the
product of the 15 (1,0, 1) with any of the tetra-
hedral representations (L,0,0) or (0,0, N) con-
tains the same tetrahedral representation exact-
ly once. Therefore the splitting of such a rep-
resentation will be linear in X, i.e., the levels
will be equally spaced. More generally there
can be terms up to third order so that for an ar-
bitrary representation we have

Tl=a+bX +c(Cy+aX?) +d(Cy+BXC,+vX%). (4)

Requiring that Eq. (4) reduce to a linear form for
the tetrahedral representations determines o, B,
and y and gives Eq. (1).

It is simple to adjoin to Eq. (1) the terms which
transform like the @ =Y =X =0 isospin singlet
member of the SU(3) octet contained in the 15,
These additional splittings are obtained by apply-
ing the Wigner-Eckart theorem to the component
T4’ of the general traceless tensor T, Y. How-
ever, observe that T® bears the same relation
to the direction of Y as T,* bears to the direc-
tion of X. Therefore, using the previous result

[Eq. (1)], the most general first-order mass
formula is”

(x)X+M2(x)[C2(x)—X2]

+M3(x)[Cs(x)—3XC2(x)

+Ml(y)Y”‘,,z(y)[cz(y)_y2]

M=M,+M,

+X3]

1,1, Y sve, Vv, )
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where the Casimir operators Cz(x) and Cs(x) re-
fer to the SU(3) subgroup orthogonal to the X
direction while Cz(y and Cs(y) are the corre-
sponding Casimir operators referring to the
SU(3) subgroup orthogonal to the Y direction.

For any SU(3) multiplet they are given by Egs. (2)
and (3). The parameters My, M; X) and Mi(y)

in Eq. (5) depend only on the SU(4) multiplet (be-
sides space-time properties) and hence are func-
tions of the SU(4) Casimir operators only.

If one regards Eq. (5) as an SU(3) mass formula
for each value of X, then part of the dependence
of the parameters on the Casimir operators ap-
pears explicitly. Thus the parameters in the
SU(3) mass formula for different multiplets of
particles of the same spin and parity can be re-
lated in this scheme.

In applying the SU(4) mass formula, one must
bear in mind that in general C;*) and ¢;(%) o
not commute so that the eigenstates with respect
to one SU(3) subgroup are not necessarily eigen-
states with respect to the other. For example,
in the center of the 15 (@ =Y =X=0) if $,*) and
¢8(x) are, respectively, the SU(3) singlet and
octet member with respect to the X direction,
then with respect to the ¥ direction ,(¥) = 3y, ®)
";‘/2—%(’() and I\ba(y) = éws(x) + 5\/2—%(36) are the
SU(3) singlet and octet member, respectively.®
Moreover, because such states are mixed, in
general the physical states, which presumably
are those with definite masses, are not pure
eigenstates of either of the Casimir operators.
The degree of mixing is determined by diagonal-
izing the mass matrix and depends on the phe-
nomenological parameters of the mass formula
[Eqa. (5)].

We note some general features of the SU(4)
mass formula. As remarked above, the tetra-
hedral representations (L,0,0) and (0,0, N) are
equally spaced in both the hypercharge Y and the
new quantum number X, The same holds true
for representations of the type (0,M,0). Since
for bosons terms odd in Y and X are excluded by
charge conjugation, boson multiplets of the type
(0,M,0) will not be split in first order. In addi-
tion, self-conjugate particles, e.g., 7, m°, w,
etc., must belong to one of the real representa-
tions (L,M, L) where M is even but L is arbitrary.

Finally we wish to emphasize the advantages
of using the different subgroups of SU(4) in analy-
ses of this symmetry scheme. In the above we
have used the SU(3) subgroups orthogonal to the
X and Y directions to obtain the simple form of
the mass formula Eq. (5); however, these tech-
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niques are more general. For example, elec-
tromagnetic properties can easily be found by
considering the subgroup whose multiplets are
orthogonal to the direction of the electric charge
. This subgroup is not necessarily SU(3) but
depends on the particular model, i.e., the mul-
tiplet assignments which determine the direction
of @. But independent of the model all particles
in the same such submultiplet have the same
electromagnetic properties, e.g., magnetic mo-
ments., It is also independent of the model that
the neutral particles in any representation (0,M,0)
will have no magnetic moments, except possibly
due to breaking of the symmetry.
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