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Nuclear magnetic resonance has been used ex-
tensively to study motional processes such as
diffusion and molecular rotation in solids.! In
all this work the effect actually studied is the
modulation of the dipolar interaction between nu-
clear moments by the dynamic process. On the
other hand, the study of quadrupolar relaxation
processes has tended to concentrate on the inter-
action with lattice vibrations. Recently Woess-
ner and Gutowsky? and Tokuhiro® have published
detailed investigations of spin-lattice relaxation
in the pure quadrupole resonance of Cl in sever-
al molecules. In a number of cases very rapid
exponential changes in T, were observed which
were explained by these authors in a rather com-
plicated way. It has occured to us that a much
simpler geometrical effect of molecular rota-
tions might be important. We were rather sur-
prised when we could not find this effect dis-
cussed anywhere in the literature, though sim-
ilar effects on the linewidth were apparently in-
vestigated by Ayant.*

A rotating molecule in a solid usually has a
number of discrete positions with relatively high

potential barriers between them. As a result,
the rotational correlation time (7) is essentially
the residence time of the molecule in a definite
potential minimum, whereas the transition be-
tween minima is very rapid. As a rule, the lo-
cal field gradients at the nucleus will have dif-
ferent orientations in space for the different po-
sitions of the molecule. The nuclear wave func-
tion remains unchanged during the jump, where-
as the quadrupolar Hamiltonian changes.* Clear-
ly this is a very effective mechanism for ex-
changing energy between the nuclear spin and
the lattice. In fact, for reasonably large rota-
tional angles one expects T, to be of the order
of the rotational correlation time (7). To illus-
trate this effect we have measured the spin-
lattice relaxation time in the pure quadrupole
resonance of N'* in hexamethylene tetramine.®
This is a particularly simple case because the
field gradients have cylindrical symmetry and
N has spin 1. Using standard techniques, it
can be shown that the polarization of the nuclear
spin at a given position in space (i.e., with a
definite orientation of the field gradient) is given
by
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n,," is the population of the state |m), for nuclei
at site v, and 6,/ is the angle between the prin-
cipal (z) axes of the field gradients at v and v’,
respectively. It should be noted that the states
Im>y are defined as eigenstates of the Hamilto-
nian at that site (i.e., with respect to a local
axis of quantization). The summation in (1) is
over all the alternative sites (v’) from which a
nucleus can jump to v.

The first term on the right-hand side of (1) is
obviously a “cross-relaxation” term, whereas
the second one represents proper spin-lattice re-
laxation.

Hexamethylenetetramine is a tetrahedral mol-
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ecule with N* nuclei at the apexes. There are
four possible positions for the N* nuclei in a
given molecule. Introducing the tetrahedral an-
gles in Eq. (1), one gets
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In our experiment we applied repeated “90°”
pulses at 3.3-3.4 Mc/sec to a powdered sample.
We measured the steady-state amplitude of the
free precession signals after the pulses as a
function of the pulse repetition rate. We found
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this technique for measuring T, more convenient

than the two pulse methods previously used main-
ly because the repetition of the signals increases

experimental accuracy.

The explicit expression for the signal ampli-
tude as a function of the repetition rate involves
rather complex integrals. It is, however, a uni-
versal function of the ratio #/7 between the pulse
separation ¢ and the correlation time 7. The
actual interpretation of experimental results is
therefore not difficult.

In our measurements we covered the tempera-
ture range 77-327°K. It was found that molecu-
lar rotations dominate the relaxation time above
250°K.® In Fig. 1 we show a plot of InT computed
from our results using Eq. (3) as a function of
1/T. One finds 1/7=v,e~BE/kT  yhere v,
=7.6x 10" and AE = 15,6 kcal/mole. This should
be compared with the results of Smith” from pro-
ton magnetic resonance. He found v,="7.5% 10**
and AE =18.7 kcal. In fact, the two results are
fairly close over the whole temperature range
covered in both experiments (see Fig. 1). The
agreement is, however, much better near the
linewidth transitions (340-380°K), so that our re-
sults are probably more accurate.

We believe this is the first time nuclear quad-
rupole resonance has been used to measure the
rate of motional processes in solids. The tech-
nique is, in fact, rather simple and seems to
have many advantages as compared to standard
nuclear magnetic resonance methods. It should
be applicable to many other systems.

A more detailed account of the theory and ex-
perimental techniques will be published later.
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FIG. 1. Plot of the correlation time for rotations of
a hexamethylene tetramine molecule (7) versus tem-
perature. T was computed from N pure quadrupole
relaxation times using Eq. (3). The dashed line repre-
sents the results of Smith.!
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