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hypernuclei with large nucleon number and hyper-
nuclei which correspond to the excited states of
nuclei. They not only afford an enormous num-
ber of experimental tests of the unitary sym-
metry model, but also constitute a chart of
hypernuclear spectroscopy. "
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1. The purpose of this note is to discuss some
properties of the electromagnetic vertex of bary-
ons under the assumption that the effective elec-
tromagnetic current associated with the strongly
interacting particles transforms according to the
adjoint representation of the group' ' SU(6). In
particular we show that, in the limit where SU(6)
is broken by electromagnetism only, all of the
following quantities can be expressed uniquely in

terms of the proton magnetic moment p(p):
(a) the magnetic moments of all baryon octet
members, (b) those of the spin-,'- decuplet, (c) all
allowed transition moments between octet and
decuplet. %e recall' &' that the octet and the de-
cuplet are united in the 56-dimensional represen-
tation of SU(6) and that 56~jg156 contains 35 only
once. All our results about baryons stem from
this single occurrence of 35.
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In a pure SU(3) treatment it is customary to
define the charge operator Q as follows:

q = (F,+ega 3).

The magnetic moment operator is

M = I1,Q'J. (2)

J is the appropriate spin matrix (J = a/2 for
spin ';), I1, is a scale factor. Q' is an operator
with the same SU(3) transformation properties
as Q. The quantity commonly called the magnet-
ic moment is the matrix element of M, between
states of highest J,. The (diagonal) magnetic
moments within any given SU(3) multiplet are
given by~

I = 5q+e[U(U+1)-1q'-$C, "&], (3)

8 = I1(s)/I1(p) = -';, (5)

in remarkable agreement with the experimental
ratio =-0.684.

(b) The spin-q deeuplet. —As U =1-@/2, SU(3)
predicts that I110=constx @. More specifically
we find from SU(6) that

I110= QI1 (P).

Thus, for example, I1(Q) =-I1(p).
(c) Decuplet-octet transitions. —We denote the

amplitude of the M, transitions by (n'J'M'I I1 I11JM },
where n' and n are particle labels. In this nota-
tion (P';& I I1 IP f1~) =- I1(P). For the deeuplet-octet
transitions J=f, J'=1~, and it is sufficient to
quote the results for M =~2 and M' = ~. Amplitudes
for other M and M' can be obtained by elementa-
ry SU(2) rotations. 1n the following it is there-
fore understood t,hat J=~&, M =~, J'=M'=~&, and
the explicit dependence need not be exhibited.

Note that SU(3) alone gives the following rela-
tionships for transitions allowed by conservation
of charge and hypercharge':

(P I I1 I N *)= -(&+ I P. I F ') = (& I I1 IN; ) = 2(Z, I I1 I Y,')
=y~3(AI p, IYO*)={:-0II1I"0 ), (7)

U being the usual U spin. ' The embedding of
SU(3)@SU(2) in SU(6) removes the D/F arbitrari-
ness reflected in Eq. (3) and gives the unique re-
lations mentioned earlier. We next state our re-
sults:

(a) Baryon octet. —We find

(4)

Beyond the SU(3) relations, first tabulated by
Coleman and Glashow, ' Eq. (4) gives the addition-
al SU(6) relation

II I& *)=(:- II1I:- *)= .
SU(6) now gives the additional relation

&piI1 IN, *&=&~2I1(p)

This is in qualitative agreement with the esti-
mates of Gourdin and Salin who obtain (P I p IN+*)
—= 1.6x(2&2/3)g(p) from a study of r+p-v +N

near the 33 resonance.
2. Derivations. —For given momentum q, the

states of the 56-dimensional representation of
SU(6)- are described by the completely symmet-
rie tensor 8 "r(q), a, g, r =1, 2, ~ ~, 6. This ten-
sor is reducible under the group SU(3)QSU(2)-,q'
the explicit reduction in the rest frame (q = 0)
being

~&Pr 0 ~&Br (fjk)d(A&C)

+ ~[(2e y +e' y )e 5
1 ~jk &k~ ABD C

i, j,k = 1, 2; A, g, C, D =1, 2, 3. Here &sj and &
BC

are the Levi-Civita symbols in two and three
dimensions, respect ve y. y~ is a normalized
Pauli spinor. The y j are the spin-&3 wave
functions. ' b~ is the usual baryon octet ten-
sor, "d( B } is the SU(3)-decuplet tensor. "

Our assumption is that the charge operator
transforms like an (8, 1) member of a 35 repre-
sentation, and the magnetic moment operator
transforms like an (8, 3} member of a 35 repre-
sentation" (we do not assume that the same 35
representation appears in both cases). Under
these assumptions, the effective, low-frequency
limit of the electromagnetic vertex of the baryons
may be written as"

3B B

[elope

+ p()P~ f (o", q x e)]Q.~Pg k . k C

ePy

y = (k, C), 8 = (f, D),

where y is an electrostatic potential and e a
polarization vector ~q. Expanding the coefficient
of y in terms of particle states we get the re-
spective charges of the particles, while the mag-
netic term yields the results quoted in Eqs. (4)-
(8) 14

3. Remarks. —(a} A more general definition of
Q has been proposed" which would lead to the
addition on the right-hand side of Eq. (3) of a
constant (independent of Q, U, and C, '1'). The
inclusion of such a term would diminish the pre-
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dictive power of SU(6) and would in particular
render P arbitrary [see Eq. (5)j.

(b) It has been noted' that the subgroup SU(4)(T)
of SU(6) gives an arbitrary mixture of Wigner
versus Majorana forces between nucleons, while

this mixture is unique for SU(6). This statement
has an electromagnetic analog, namely, the iso-
scalar vs isovector ratio is fixed in SU(6) but

arbitrary in SU(4)(T), so that SU(4)(T) does not

make any predictions for P. However, if one as-
sumes that the effective electromagnetic current
transforms according to the adjoint representa-
tion of SU(4)(T), one obtains" tl =-l.

(c) It has been noted in reference 3 and inde-
pendently by Sakita" that SU(6) relates the struc-
ture of Pauli-type vector-meson terms to that
of the P-wave pseudoscalar term. Sakita has
studied an assignment where the baryon octet is
contained in the 20-dimensional representation
of SU(6). P is unique also for this choice and we

find P = -2 in this case. This may serve as a
further indication that the 56 representation is
prof erable.

(d) All our results can also be obtained by the

method of vector addition of magnetic moments, "
by regarding the baryons as composite struc-
tures built up out of spin-'; quarks'9 with compos-
ite wave functions dictated by SU(6). This meth-
od can of course be applied to other SU(6) repre-
sentations as mell. In this way one easily shows
that SU(6) yields a new relation for the 35 meson
representation, namely p(p+) =3(w+, 0, Oj p )p+,
I, 0). We hasten to add that this remark is not
meant to shed light on the existence of quarks.

4. Finally, we discuss some implications of
our results from the point of view of a local
Lagrangian field theory. It should be stressed
that the conclusions obtained so far have come
from an analysis of an effective vertex'~ under
the assumption that this vertex has prescribed
SU(6) properties. Likewise the results found in
reference 3 referred exclusively to an SU(6)-
invariant effective strong-interaction vertex.
However, in the present electromagnetic case
we are in the unique position to be able to com-
pare a specific numerical prediction of the SU(6)
theory with an equally specific answer of local
field theory. Loosely speaking, the situation is
the following: According to Eq. (5), P =-';. This
comfortable value for P is a pure number, inde-
pendent of any coupling constants. In field theory
we have been accustomed for many years to say,
"In the limit where the strong interactions are
'turned off, ' we should have p(n) =0, p(p) = I,

hence P = 0; or, conversely, the 'anomalous' mag-
netic moments of nucleons come about by 'turn-

ing on' the strong interactions. " Thus we arrive
at a paradox which comforts while it mocks: We

cannot assume both that the SU(6) group is valid

and that local field theory with minimal electro-
magnetic interactions applies to nucleons.

We shall next attempt to state this imcompati-
bility in more precise terms. Let us consider
the following set of assumptions: (I) Strong and

electromagnetic effects are derivable from a
Lagrangian 2 = 2, + Z(g) + g(e). Here Zo is the

free Lagrangian, Z(g) symbolizes all strong-
interaction terms, and Z(e) stands for the elec-
tromagnetic terms. Z„Z(g), and Z(e) contain
explicitly the local nucleon fields. (II) 2(e) is
minimal, that is, it contains no derivatives of the

electromagnetic potentials, while also the SU(3)
trace of the charge operator shall vanish (Q=F,
+F,/v3). (III) 2, + Z(g) is invariant under a
group which contains SU(6) as a subgroup. As

SU(6) is a, linear group, this means in particular
that 2, and Z(g) are separately SU(6)-invariant.
Furthermore, Z(e) shall have the definite SU(6)
properties assumed above for the effective elec-
tromagnetic vertex. (IV) It is possible to calcu-
late in such a theory the magnetic moment of the
neutron, which we denote by p.„(e,g), and like-
wise for other particles. Moreover, g„(e, 0)
exists and is identical with the neutron magnetic
moment calculated from 2 = 2, + Z(e); likewise
for the proton. We conclude that the assumptions
(I) to (IV) are incompatible.

We are now faced with two connected questions.
First, one should prove this statement in a di-
rect fashion rather than having recourse to the
numerical result for P. Second, if one believes
(as we do) that the results obtained with the

SU(6) assumptions are not a series of numerical
coincidences, one will have to revise some of
the assumptions (I) to (IV) and the question is
which ones. These questions will be studied
further.
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