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We shall discuss here conditions under which
an electromagnetic beam can produce its own

dielectric waveguide and propagate without spread-
ing. This may occur in materials whose dielec-
tric constant increases with field intensity, but
which are quite homogeneous in the absence of
the electromagnetic wave. Such self-trapping in
dielectric waveguide modes appears to be possi-
ble in intense laser beams, and to produce
marked optical and physical effects.

A crude description of the phenomenon sug-
gested here can be obtained by considering the
diffraction of a circular optical beam of uniform
intensity in material for which the index of re-
fraction may be expanded in terms of field
strength as

n =no+n2E + ~ ~ ~ .2

If the beam diameter is D, the beam might be ex-
pected to expand by diffraction with an angular
divergence of 6 = 1.22k. /noD. But if the term n, E'
produces a dielectric constant within the beam
which is so high that the critical angle for total
internal reflection at the beam's boundary is
greater than 6), then spreading by diffraction will
not occur. For 6) «1, this requires

&D nFcP = ' ~ (1.22')'
4 8v

'
64n2'

where P is the total beam power. This simple
approximation indicates that a beam above a

certain critical power level may be trapped at
any arbitrary diameter and not spread, and that
this power level decreases with ~'. For normal
dielectric materials, the constant n, is such that
the critical power for trapping is within one or
two orders of magnitude of 10' watts for visible
light, a power level commonly obtained in laser
beams. For radio waves, the longer wavelength
makes the critical power for such materials un-
attainable at present.

The nonlinear coefficient u, may be associated
with high-frequency Kerr effects involving mo-
lecular orientation, with electrostriction, or
with nonlinearities due to electronic polariza-
bility of the type which generates third-harmonic
waves in optical materials. For liquids, the
first two effects are of comparable size and the
third much smaller, as indicated in Table I.
For solids, in which molecular rotation is frozen
out, electrostrictive effects dominate. Each ef-
fect has its own inertial and resistive character-
istics, but we shall consider primarily a steady-
state condition in which these are unimportant,
a valid approximation for many interesting cases.

It is instructive to note also that, on the basis
of geometric optics, the nonlinear dielectric
response implies that light cannot be focused to
a point, but is rather focused into a line. Con-
sider a plane wave passing through a lens which
would converge the light to a point. A ray of the
beam which initially makes an angle 6)0 with the

Table I. Coefficients for nonlinear indexes of refraction n~ and the critical power levels P for self-trapping.
Index of refraction =no+n2E, where E is in esu.

Material

n2 &10
{Kerr effect)a

A 8
n2 &10

(electrostr iction)

P
(electr ostriction)

(MW}

Carbon disulfide
Benzene
Water
Air (1 atm)

(100 atm)
Glass (heavy silicate flint)
Calcite
Sapphire

180
49

18

0.13

18
13

2

0.041
4. 1
0.9
0.8
0.2

0.2

0.25
1

80
0.8

4
4

20

aJ determined from: (A) G. Mayer and F. Gires, Compt. Rend, 258, 2039 (1964); (B) P. D. Maker, R. W.
Terhune, and C. M. Savage, Phys. Rev. Letters 12, 507 (1964).

b
y and 8 determined from International Critical Tables (McGraw-Hill Book Company, Inc. , New York, 1929) .
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where e=eo+eQ'. Consider now solutions of the
form E = E&(x, y) cos(k z —ef), which we will call
steady-state solutions, since there is no varia-
tion of the field at any point other than the regu-
lar oscillation of optical frequency c . We shall
also assume now that the nonlinear dielectric
response is much slower than the optical oscil.la-
tion, which can be true for electrostrictive ef-
fects and for some types of Kerr effects, but not
for electronic polarization which produces opti-
cal harmonics. For such conditions, one may
average E over time, and (3) becomes

(4)

where I' =k '-k' and k =nP, =no~/c.
In the case where E& depends only on y, and

under the assumption of linear polarization,

d2
,E (y)-I'E (y)+~k 'E '(y) =0.

dy
(5)

If F& represents a slab-shaped beam, confined
in the y direction, the boundary conditions are
E(y) —0 as y —~ and dE/dy = 0 at y = 0. This ex-
cludes periodic solutions, so that 1"2&0. A me-
chanical analog of (5) is a particle in a double-
well quartic potential-energy function. It is im-
mediate from consideration of this analog that
there is a unique solution which is not oscillatory,
namely E&(y) = E&(0)/coshi'y, where I' must equal
&e2" k0E&(0). Note that, given a certain size of
the beam (-1/I'), the field inside the beam must
attain a value E&(0) for trapping.

axis can be shown, assuming n =no+n2E', not to
follow a straight line but the hyperbola

r-(8n, P/n, 'cr) = —H~,

where P is the power, v is the ray's distance
from the axis, and z is measured along the lens
axis from the normal focal point z =0. This ex-
pression makes the approximation that the light
path is not affected by terms higher than first
order in P. Thus the focused beam never reaches
a focus, but approaches the axis asymptotically.
However, by the time the beam's diameter has
become as small as a few wavelengths, the ap-
proximation of geometric optics is no longer
valid, and wave properties must be allowed for.

The electromagnetic wave equation is modified
in the presence of nonlinearities to become

A more interesting, though somewhat more
complex, case is a cylindrical beam. For this
case, and with the assumption of circular polar-
ization, (3) becomes

if r*= I'r, E'(r*) =O'"E&(r*), and b = ~e,(k,/I')'
This shows that the steady-state solutions can be
scaled via the factor v b to give any arbitrary
size for the beam cross section. Equation (6) ap-
pears to have no simple analytical solution, a
solution obtained by numerical integration is
shown in Fig. 1.

The critical power for trapping of a cylindrical
beam is given by

P = n2v fE—*'(r*)r*dr*(I'b)
4~ eff

where n ff =k /k0= [n0'+(e2/2b)]'". Numerical
integration of (7) gives the critical power P
=5.763K'cn /8v'n n, which is just equal toeff
that given by~the simple Eq. (2) for large beams.
This integration also allows evaluation of b as a
function of E(0) and hence gives neff [n0 +E2E'(0)/
9.72]'". The sole dependence of power on beam
di~~ete~ is th~o~gh ~ ff, which is usually
portant except for beams with diameters as small
as a few wavelengths. This, plus other nonlinea, r-
ities in the dielectric material which have not
been included in this approximation, will make
the actual diameter of the trapped beam depend
somewhat on power.

The dynamics of beam formation and changes
in the dielectric material are not yet well under-
stood. This includes questions about initiation of
trapping, perturbations to which the cylindrical
trapped beam is stable, and the beam's behavior
if the power is appreciably above threshold.
During an intense laser pulse which lasts about
10 ' sec, there must be time for change of the
dielectric constant for trapping to develop. For
electrostrictive effects, the time required is
that for sound transmission across the beam's
diameter, or 10 ' sec for a filament a, few wave-
lengths in diameter. Time constants for Kerr
effects associated with molecular rotation are of
order 10 "sec and are independent of beam
diameter. During the response times of the di-
electric material, its inertial and resistive prop-
erties will have important effects on the dynamic
behavior of the light beam. To initiate a very
small trapped beam, focusing a laser beam in
optical material appears a natural technique,
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FIG. 1. Calcul. ated radial distribution of the electric field in a self-trapped electromagnetic wave.

since the steady-state result of the geometric
optics approximation is not a focal point, as
shown above, but a thin axial beam. If a broad
beam is considerably above threshold, presum-
ably it breaks up into several beams of threshold
power, but in the case of slab-shaped beams of
a single frequency such solutions do not seem to
occur stably, and the situation is not clear for
more complex shapes.

It is clear that there can be weak modulation
of the steady-state beams discussed above if the
modulation is fast compared with the response
time of the nonlinearity. Because the beam
when once trapped establishes a waveguide of ap-
propriate characteristics for its own conduction,
any weak wave of higher frequency can also eas-
ily be shown to be conducted, but not one of low-
er frequency. The dielectric properties of the
waveguide are undisturbed to first order in the
weak field as long as the beat frequency between
it and the initial wave is too high for the dielec-
tric to respond. If the beat frequency is lower,
then one has a waveguide of modulated dielectric
constant, and solutions for the two simultaneous
waves are much more complex.

It does seem clear that two waves whose fre-
quency difference is too high for the dielectric
response are more stably trapped than is a wave
of a. single frequency. This is because the in-
crease in dielectric constant of the waveguide
produced by one wave which helps form the wave-
guide is relatively unaffected by small perturba-
tions of the second wave and vice versa.

Table I gives values of n~ for Kerr and for elec-

trostrictive effects, and the critical power cal-
culated for electrostrictive effects alone. For
Kerr effects, n, = &AJ, where J is the high-fre-
quency Kerr constant due to molecular rotation.
For electrostriction, n, =y'/16mn, B, where y
=pdG/dp, p is the density, and 8 is the bulk
modulus. The critical power for trapping is cal-
culated for electrostriction along, partly because
the theory given above holds rigorously only for
a circularly polarized beam, to which molecular
rotation would make only a partial contribution.
However, for a plane-polarized beam, the Kerr
effect contributes fully to n, as well as to elec-
trostriction, and it is reasonable to assume that
this will result in a comparable equation for
threshold power.

The most striking present experimental evi-
dence for trapped optical beams are the extreme-
ly thin, long streaks of ionization spots and dam-
age which sometimes occur in optical materials
in which an intense laser beam is focused. These
were first reported by Hercher' as thin threads
of damage in glass and other materials, and are
fairly easily demonstrated in glass by focusing
a ruby-laser beam greater than a few megawatts
inside good optical glass. Usually, though not
always, there is extensive damage near the foc*l
point and beyond the focal point a long straight
filament of small bubbles and damage along the
lens axis, accompanied by ionization. This fila-
ment may be as long as several centimeters and
at the same time have a diameter of only a few
wavelengths. This diameter is in some cases
two orders of magnitude smaller than the focal
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diameter, assuming linear optics.
Without trapping and a major increase in index

of refraction it seems very difficult to explain
such a long straight path of concentrated light

energy, since the diameter of only a few wave-
lengths would imply rapid diffraction spreading.
Any acoustic or shock waves, which might be
considered an alternate source of damage, would

travel a distance of only about 10 3 cm during
the laser pulse, and would have to be of such high

frequency that they would be highly attenuated.
If the laser beam is trapped in such small di-

ameters, as is indicated, the field intensity
would be of the order of 10 volts per centimeter,
and the increase in index of refraction due to non-
linearities of the order of unity. It is hence easy
to see that important optical, mechanical, and

field effects can take place in the filament. The

low power levels at which self-trapping can oc-
cur theoretically in liquids indicate that this phe-
nomenon may be related to some of the unusual

characteristics of stimulated Raman emission in

liquids.
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The molecule F, is closely similar to H, in the
following respects: Both are homonuclear mole-
cules, both have nuclear spins of —,

' and conse-
quently no quadrupole interaction, and both have
large nuclear magnetic moments. Since mea-
surements of the nuclear magnetic interactions
and rotational moments of H2 have been particu-
larly valuable in studies of molecular structure
and nmr relaxation processes, we have made
similar measurements on F, by the molecular-
beam magnetic-resonance method using an ap-
paratus previously described by Baker et al. '

The nuclear transition spectrum was initially
observed in the high-field limit. A typical run
in an external field H of 3735.8 gauss is shown

in Fig. 1. High-field perturbation theory shows
that, for each value of the rotational magnetic
quantum number, mg, there should be a differ-
ent line separated from the central my=0 line by

approximately em~, where c is the spin-rotation
interaction constant. The structure of the indi-
vidual lines can be attributed to the spin-spin in-
teraction and second-order spin-rotation effects.
Lowering H to 1864.2 gauss shifted the positions
of the lines slightly and broadened them appre-
ciably by increasing second-order effects. From
the splitting of the lines t ct can be measured,
and from their shapes the spin-spin interaction
constant d can be deduced. The precise defini-
tions of c and d are the same as used in the cor-

CO
Z
UJ

mJ=
l

14.2 14.4 14.6

I 0 -I
l I I

14.8 15.0 15.2
FREQUENCY (Mc/sec)

-4 -5
I l I

15.4 15.6 15.8

FIG. 1. Nuclear spectrum of Fz. This spectrum was observed with a 5-turn radio-frequency coil l. 5 inches
long under the following conditions: external magnetic field =3735.8 gauss, source temperature =77'K, rf current
=0. 85 A, time constant=50 sec. The lines above the spectrum are frequency markers spaced 20 kc/sec apart.
The number beneath each spectral line is its m& value, found by using high-field perturbation theory and the sign
of c determined from the low-field experiment.


