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(p, v, i,j =1, 2, ~ ~ ~, 6). These operators satisfy
the commutation relations

[B,B ]=5 8 -5 8
v '

P P v v P
(2)

The symmetry-breaking term is proposed to
be Ts +T,', where

[B,T ]=5 T -5 T
v

'
P P v v P

Note that the hypercharge operator Y is -(Bs'
+8,') It can be s.hown that'

T =a 5 +a 8 +a (8 8) +a (8 8 8)
v 0 v 1 v 2 v 3 v

Recently it was proposed by Gursey and Radi-
cati' and Pais that the SU(6) symmetry scheme
incorporating spin and unitary spin may have
important consequences in particle physics.
They discussed, among other things, a possible
mass formula and applied it to some low-dimen-
sional representations. In this note' we propose
that the SU(6) symmetry is broken analogously
as in SU(3),"' namely, the primary symmetry-
breaking term in the Hamiltonian transforms
like the I= 0, F = 0, 2 = 0 member of the 35 repre-
sentation. The major result of this assumption
is that in a given SU(6) representation, states
with the same I, Y, and J belonging to different
SU(3) multiplets are mixed in a, definite way.

The 36 traceless operators 8 ~ of SU(6) are
defined such that their representation in the six-
dimensional vector space C, are given by

For mesons mass squared is to be used in Eq. (5).
The symbol (8 8)SU(4) denotes the quadratic
Casimir operator of the SU(4) subgroup which
is considered by Gursey, Pais, and Radicati.
Q is an angular momentum vector with com-
ponents

Q~ =Be'~

q 8 s (6)

In the quark language, '
Q = q for the S = +1 quarks

and Q =0 for the S= 0 quarks. In Table I we shall
give all the eigenvalues of (8 8)SU(4) and Q of
all the particles in the 20, 35, 56, and 70 repre-
sentations.

Now let us discuss the 35 representation [35
=(8, 1)+(8,3)+(1,3)] which has as members the
pseudoscalar-meson octet and the vector-meson
nonet. Since

35CR 35 = 1 835% 35$189$280$280*$405, (7)

the matrix element

(35 t T )35)

where the a.'s are constants depending only on
l.

the five Casimir operators of the group.
For the few low-dimension representations

discussed below, only the first three terms in

Eq. (4) are needed. Therefore, for those SU(6)
supermultiplets we can write down the follow-
ing mass formula. '

M=M +a Y+b[( BB) -2Q(@+I)-~Y f. (5)

+a (B.B.B 8) +a (8 8 B.B.B), (4)
4 v 5 v

=a +a (3518 ~35)+a (35[(B 8) i35). (8)
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Table I. SU(4) multiplets in SU(6),

Particles

Ps (d~ ll'

E*,K
E*,K

/p

Yl

N*, N
Yf*, L, A

0

N3/2, Nf /2, Nf/2
f /2 f /2 3/2

y f/2 y i/2 y 3/2
0 & 0

y f/2 y f/2 y 3/2
f

f/2 ~ 3/2
Hf/2 ~ ~f/2

f/2~f /2

g f/2
0

y f/2 y f/2 y 3/2
0 ~ f ~ 0

f/2
f/2

i/2~f /2

No. of states

15
8
8
3
1

20
20
12

4

20
12
20
12

4
2

12

4

35

56

70

20

Representation
of SU(4)

15
4
4 +

1
1

20
10

4
1

20
6

10
4
4
1

6
4 Q

4

)SU(4)

16
9

1

10
5
9
4

This simplification from Eq. (4) is the result that
in Eq. (7) 35 occurs only twice in 35Igl 35. The
immediate consequence of Eq. (5) is as follows:

(1) For vector mesons we get the familiar
result

(d P

m 2+m 2 2m 2

cp p E*

cracy can be lifted by a spin-dependent mass
term which can only be a function of J(J+1).
We emphasize that the inclusion of this spin-
dependent term will not affect the results in
Eqs. (9)-(12). (See below for more details. )

We next come to a discussion of the 56 repre-
sentation [56 = (10,4) + (8, 2) ] which has as mem-
bers the baryon octet and decuplet. Since

(2) For pseudoscalar mesons we get the usual
mass sum rule, '~'

m '='(3m '+m ').

(3) We also obtain the relation
2 2= 2 2

Pl~~ m —Ppl~ PS

35 56 = 56870 700 1134,

56 occurs only once, the matrix element

(56(T l56) =a +a (56IB I56).

Thus the mass formula for 56 reduces to the
simple form

M = Mo+gqY.

(i3}

(i4)

(15)

which was noticed before. '
(4) In connection with Eq. (9), we also obtain

from Eq. (8) the mixing of y' and &oo unambigu-
ously, such that the physical y and u are given
by

(16)

M -M =M -M (iva)

(1) Now both the decuplet and the octet are
equally spaced:

M -M =M -M M M
N

(2)1/2~0+ (1)1/2 0

( 1)1/2~0 + ( 2)1/2 0 (i2) (IVb)

(5) We further notice that the primary sym-
metry-breaking term (T~~+ T,6) still leaves p
and w degenerate (also E» and K). This degen-

(2) Furthermore,

M -M =M -M (18}
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2(M +M ) =3M +M (17c)

We note that Eqs. (10)-(12), (16), and (18) are
not changed. [Equation (9) becomeso m ~+ s~(m

+m ) =2m&~'. ) The general mass formula can
now be written as

M=M +al'+b[(B B) -2Q(@+1)-~~Y ]

+ ~(v+1) + a[I(I+ 1)-$r']. (19)

So far we have only reproduced some familiar
results. Now we proceed to a discussion of the
70 representation [70= (8, 4) +(10,2) +(8, 2) +(1,
2)]. Again we obtain an equation similar to
Eq. (8), since

3549 70 = 20% 56$70$70$540$560$1134. (20)

For the spin-~3 baryon resonances we have the
familiar octet mass formula. ' In the case of
the spin-~ resonances we again encounter the
mixing problem just as in Eq. (12) where yo and
co get mixed by the symmetry-breaking term.
Here the I= 0, F = 0 members of (8, 2) and (1,2)
are mixed. Furthermore, the I= ~, Y= -1 mem-
bers of (8, 2) and (10, 2) are mixed. So are the
I=1,1'=0 members of (8, 2) and (10, 2). The
mixing angle is found to be 8 = 45' in all three
cases. From Eq. (19) there are six mass sum
rules among the nine (in general) nondegenerate

(3) We still have the degeneracy between .~

and =, etc., which can be removed by a spin-
dependent mass term as before.

(4) Now A and Z are still degenerate. This
degeneracy can be removed by adding a term of
the form X[I(1+1)-~Y] to Eq. (5). Equations (17a)
and (17b) are now combined to give the usual oc-
tet mass formula,

particles:
I +3 ~ I —QI+3g I

QI+Pf I — I ++ I

2(N~~ '+ ~') =3A~'+Z~',

(21a)

(21b)

(21c)
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where Ns, a x„'have I= &, &, respectively. The
subscript + denotes the heavier, and —the light-
er of the two particles with the same I and Y.
We note that Eq. (21a) takes a form hitherto not
discussed. So far very few spin-~ resonances
have been positively identified in the experi-
ments. It is hoped that Eqs. (21) may be helpful
in finding spin-~ resonances in the future.
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Note added in proof. —The transformation prop-
erties of the terms Z(2+1) and [I(I+1)--4F'],
which are not considered in this Letter, have
since been discussed by Bdg and Singh. ~ In fact,
their Eq. (22) reduces to our Eq. (19) for b=f=0.


