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The interpretation of the resonances in the
slow neutron cross sections of fissionable nuclei
rests largely on the channel theory of fission. 'y'

At low energies there are a number of almost
discrete fission thresholds for the decay of a
compound nucleus in a state with angular momen-
tum J and parity r. The ratio of the average fis-
sion width 1 ( ") to level spacing D( ~) of com-
pound nucleus states at energy F. is related to

f

iche

fission channel thresholds E; ~~ by I' ~~)/
D ( ")= Q~P~/2w . The penetrability factor P~ for
the fission channel i is'

P ={1+ exp. l2m(E. -E)/h(o]j(Jv)
2 2

if the potential barrier at the saddle point is an
inverted harmonic oscillator with circular fre-
quency u. The energy h~ is expected to be of
order 0.5 MeV; if the spacing of the threshold
energies E (~~) is greater than this the energy

2
dependence of lf(~~)/D(~~) will have, in Wheel-
er's phrase, a "carpeted staircase" appearance.
The quantity Q&P~ is usually denoted by Neff, the
effective number of channels of given spin and

parity that are open at energy F, .
The most studied fissionable nuclei are U"',

U'3', and Pu'~. The target U'" has spin and

parity 2&+. The compound states of U'" formed
by s-wave neutron bombardment have spin and
parity 2+ and 3+. Zero neutron energy corre-
sponds to an excitation of 6.8 MeV, which is 1.5
MeV above the lowest fission threshold. ' In this
energy interval of 1.5 MeV it is possible, accord-
ing to %heeler, ' that two channels open for the
2+ levels (corresponding to a level of the lowest,
K = 0, rotational band and a gamma-vibrational
level, K = 2, with no rotation) and that one chan-
nel opens for the 3+ levels (corresponding to a
gamma-vibrational level with one unit of rota-
tion). These considerations are confined to tran-
sition states at the saddle point with collective
character. There may be, in addition, transition
states with intrinsic nucleonic excitation. The
value of Neff averaged over the two spin states
is thus expected to be at least 1.5.

U 5 has spin and parity &; the U'~ compound
states have spin 3 and 4 . The neutron separa-

tion energy is 6.4 MeV, which is about 1 MeV
above the lowest fission threshold. ' At this en-
ergy there could be two open 3 channels (a
"sloshing" vibration, K =0, arith rotation, and a
bending vibration, K = 1, with rotation) and one
open 4 channel (a bending vibration with greater
rotation). The average value of Neff should be
1.5.

Pu' has spin and parity ~ and the compound
states of Pu" have spin 0 and 1+. The neutron
separation energy is 6.38 MeV, 1.6 MeV above
the lowest fission threshold. ' The only expected
open channel from among the collective family is
the "ground, "K = 0, J = 0+ state. Thus, in the
absence of channels with nucleonic excitation at
the saddle point, Neff should be unity for the 0+

levels and zero for the 1+ levels and its average
value is 0.5.

The experimental data give results that are
very different from these expectations. For U' '
the average value' of jeff is 0.65+ 0.13, for U"'
jt is'0.18g0.03, and for Pu" it is 0.12+0.03.
Some data are available on the spins of the Pu'
resonances. ' These suggest that Neff(J" =1+)
= 0.3 a 0.1 and Neff(J" = 0+) is very small.

It is our purpose to suggest that these discrep-
ancies are due to the single-level nature of the
analysis of the data. Many analyses are frankly
single level in nature; they use the total width
of a maximum in the cross section and the peak
values of the partial cross sections to extract
the neutron width I'„,fission width If, and radia-
tive-capture width I'&. Other analyses employ a
many-level formalism, but they implicitly con-
tain the assumption that a maximum in the cross
section is associated with a single level in the
reaction formalism. Only when the fitting gets
into extreme difficulties is this assumption con-
travened and a "hidden level" invoked. The par-
tial widths obtains, d differ little from those
yielded by single-level fitting.

It is not generally realized how drastic level-
level interference effects can be. An explicit
two-level formula has been available for many
years9 but its properties do not seem to have
been studied. Its major property is the following'.
If two levels (same spin and parity) are more
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FIG. 1. Parameters for (a) are: E& =22.81 eV, (11 )~ =0.159 (meV)~, (I'1y)~ =-0.728 (eV) 2, I'1
=0.025 eV, E2 ——22.92(I'2„) 2=0.384 (meV)', (I' )~ =0.574 (eV) . In (b) there is a change of sign of one
reduced width amplitude.

closely spaced than their widths they may give a
single resonance with width that is less than the
width of either level and with partial cross sec-
tions that can be very different from those that
would be suggested by the partial widths of the
levels. Examples of two-level interference are
shown in Fig. 1. The spacing of the levels is
110 meV, their fission widths (in one channel)
are 522 meV and 332 meV, radiation widths are
25 meV, and neutron widths are 0.12 meV and
0.71 MeV. A single-level analysis of the reso-
nance in Fig. 1(a) gives I"„=0.84 meV. I' = 26
meV, and If =14 meV. Figure 1(b) differs from
the other in the sign of one partial-width ampli-
tude. It is obvious that the single-level analysis
would give an erroneous account of the parame-
ters required for comparison with channel theo-
ry. Lest it be thought that the parameters of
Fig. 1 are outrageous it should be pointed out
that they occurred in the first run of a computer
program which randomly selected reduced-width
amplitudes and spacings for 20 levels from
Porter-Thomas'o and Wigner" statistical dis-
tributions. It was assumed that the mean fission
width was ~w times the mean spacing, i.e., Neff
= 1. When Neff = 1 the probability that the sum
of the fission widths of two neighboring levels is
greater than their spacing is 0.12.

The situation is even more complex if the
cross section is formed from levels of two

spins. The repulsion" between levels of like
spin does not exist for unlike levels. In conse-
quence, when Neff is unity or greater it is very
common for two levels to be closer than their
widths and a single broader maximum to occur
in the cross section. This and the interference
effect give rise to a cross section in which the
mean level spacing will be overestimated and
the mean fission width underestimated. As an
example we have calculated a cross section
from signer -Eisenbud ma, ny-level formal-
ism. ' &' This is shown in Fig. 2. The reso-
nance spacings were generated randomly from
a signer distribution with mean value of 0.5
eV for each spin. The neutron reduced-width
amplitudes were generated from a zero-mean
Gaussian distribution' with a dispersion appro-
priate to a strength function of I'„0/D=1 x10
The fission-width amplitudes for each channel
were generated similarly. The mean fission
widths were equivalent to jeff 3 x1 for one
spin and to Neff 1+2~0.1 for the other spin,
giving an average of 2.1; such values could be
expected from the channel theory. The radia-
tion widths were constant at 25 meV.

A single-level analysis of the cross section
in Fig. 2 gives «I' (&")»=137 meV "D(J'v)»f=1.06 eV, and average "Neff" =0.8+0.14, which
is remarkably close to the U~~ value. This is
not the only similarity. The histogram of the
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FIG. 2. Section of a computer-generated cross section; solid lines are ag, dashed lines are 0&. The vertical
lines on the abscissa are the actual positions of levels.

"fission widths" of the simulated cross section
can be fitted by a chi-squared distribution' with
approximately four degrees of freedom. For
U~s the distribution also corresponds to four
degrees of freedom and for V~' to about two de-
grees of freedom. The "radiation widths" of the
simulated case fluctuate from 17 to 88 meV.
Corresponding fluctuations are found in pub-
lished U233 and U 35 data. &

~ Many of the small-
level spacings do not appear in the simulated
cross section, ' in fact there are indications of
only 22 resonances in the cross section where-
as 34 were actually generated. Michaudon"
has remarked that the level-spacing distribution
obtained from the U~ cross section shows a
dearth of small spacings; 20% more small spac-
ings would be required to obtain agreement with
a simple spacing superposition formula" for
two spins. Finally, the simulated total cross
section never falls to much less than 20 b in the
minima; similar behavior is observed in the
cross section of U"' and U'3'. If Neff were
really less than unity the minima should fall
almost to the potential scattering value of about
10 b. It thus seems extremely plausible that the
U"' and U~' cross sections and possibly also

the Pu'3' cross section are fully consistent with
the expectations of the channel theory of fission,
and it is the assumptions made in analyzing the
data that have been at fault. More quantitative
statistical analyses are now being pursued in
the hope that it may be possible to obtain better
estimates of the number of open channels.
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(p, v, i,j =1, 2, ~ ~ ~, 6). These operators satisfy
the commutation relations

[B,B ]=5 8 -5 8
v '

P P v v P
(2)

The symmetry-breaking term is proposed to
be Ts +T,', where

[B,T ]=5 T -5 T
v

'
P P v v P

Note that the hypercharge operator Y is -(Bs'
+8,') It can be s.hown that'

T =a 5 +a 8 +a (8 8) +a (8 8 8)
v 0 v 1 v 2 v 3 v

Recently it was proposed by Gursey and Radi-
cati' and Pais that the SU(6) symmetry scheme
incorporating spin and unitary spin may have
important consequences in particle physics.
They discussed, among other things, a possible
mass formula and applied it to some low-dimen-
sional representations. In this note' we propose
that the SU(6) symmetry is broken analogously
as in SU(3),"' namely, the primary symmetry-
breaking term in the Hamiltonian transforms
like the I= 0, F = 0, 2 = 0 member of the 35 repre-
sentation. The major result of this assumption
is that in a given SU(6) representation, states
with the same I, Y, and J belonging to different
SU(3) multiplets are mixed in a, definite way.

The 36 traceless operators 8 ~ of SU(6) are
defined such that their representation in the six-
dimensional vector space C, are given by

For mesons mass squared is to be used in Eq. (5).
The symbol (8 8)SU(4) denotes the quadratic
Casimir operator of the SU(4) subgroup which
is considered by Gursey, Pais, and Radicati.
Q is an angular momentum vector with com-
ponents

Q~ =Be'~

q 8 s (6)

In the quark language, '
Q = q for the S = +1 quarks

and Q =0 for the S= 0 quarks. In Table I we shall
give all the eigenvalues of (8 8)SU(4) and Q of
all the particles in the 20, 35, 56, and 70 repre-
sentations.

Now let us discuss the 35 representation [35
=(8, 1)+(8,3)+(1,3)] which has as members the
pseudoscalar-meson octet and the vector-meson
nonet. Since

35CR 35 = 1 835% 35$189$280$280*$405, (7)

the matrix element

(35 t T )35)

where the a.'s are constants depending only on
l.

the five Casimir operators of the group.
For the few low-dimension representations

discussed below, only the first three terms in

Eq. (4) are needed. Therefore, for those SU(6)
supermultiplets we can write down the follow-
ing mass formula. '

M=M +a Y+b[( BB) -2Q(@+I)-~Y f. (5)

+a (B.B.B 8) +a (8 8 B.B.B), (4)
4 v 5 v

=a +a (3518 ~35)+a (35[(B 8) i35). (8)
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