similar relation can also be obtained for $\lambda = \frac{5}{2}$, namely

$$m_{Y_0^{*}(1815)} = \frac{5}{2}m_{K^{*}(725)} = (25/4)m_{ABC}.$$
 (22)

Upon using $m_{ABC} = 290 \text{ MeV}$,¹⁵ the right-hand side becomes 1812.5 MeV, in very good agreement with the experimental value ($\approx 1815 \text{ MeV}$).

A more detailed account of the present work will be given in a later paper.

I wish to thank Dr. G. C. Wick for informing me of his results prior to publication, and for suggesting their possible use in connection with the mass relations.

¹T. F. Kycia and K. F. Riley, Phys. Rev. Letters <u>10</u>, 266 (1963).

²R. M. Sternheimer, Phys. Rev. Letters <u>10</u>, 309 (1963).

³R. M. Sternheimer, Phys. Rev. 131, 2698 (1963).

 ${}^{4}R.$ E. Peierls and S. B. Treiman, Phys. Rev. Letters $\underline{8}$, 339 (1962).

⁵T. Takabayasi and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto) 30, 272 (1963).

⁶We remark that the relation $m_f - m_{\varphi} = m_{\varphi} - m_{\omega}$ was noticed independently by the present author. Results similar to those of reference 5 were also obtained by R. Kumar, private communication.

⁷This equation for m_{ρ} was also proposed by Takabayasi [see reference 11, Eq. (28)].

⁸T. F. Kycia, private communication.

⁹M. Abolins, R. L. Lander, W. A. Mehlhop, N.-H. Xuong, and P. M. Yager, Phys. Rev. Letters <u>11</u>, 381 (1963).

¹⁰G. C. Wick, private communication.

¹¹T. Takabayasi, Nuovo Cimento <u>30</u>, 1500 (1963). ¹²It may be noted that the recently reported $K\pi\pi$ resonance [T. P. Wangler, A. R. Erwin, and W. D. Walker, Phys. Letters <u>9</u>, 71 (1964)] with mass 1175 MeV would correspond to p=0, q=5, i.e., $m=5\kappa$. Moreover, the P_{11} pion-nucleon resonance [L. D. Roper, Phys. Rev. Letters <u>12</u>, 340 (1964)] with mass 1485 MeV corresponds closely to p=4, q=4, for which Eq. (17) gives 1488 MeV. The recently discovered X meson, decaying into $\eta + 2\pi$, with mass m = 960 MeV, has the assignment p=7, q=0; we have $7m_{\pi} = 961.1$ MeV [G. R. Kalbfleisch et al., Phys. Rev. Letters <u>12</u>, 527 (1964); M. Goldberg et al., Phys. Rev. Letters <u>12</u>, 546 (1964)].

¹³Whenever they are available, we use the experimental mass values of A. H. Rosenfeld, <u>Proceedings</u> of the International Conference on High-Energy Nuclear Physics, <u>Geneva</u>, 1962, edited by J. Prentki (CERN Scientific Information Service, Geneva. Switzerland, 1962), p. 783.

¹⁴This type of plot has been suggested by R. F. Peierls (private communication).

¹⁵N. E. Booth and A. Abashian, Phys. Rev. <u>132</u>, 2314 (1963).

EMPIRICAL PION-NUCLEON SPECTROSCOPY

Bernard Thevenet* Brookhaven National Laboratory, Upton, New York

and

Janos Zsemberv^T

Laboratoire de Physique Corpusculaire à Haute Energie, Centre d'Etudes Nucléaires, Saclay, France (Received 28 May 1964)

The aim of this Letter is to show simple connections existing between the presently known pion-nucleon resonances (for simplicity, we call "resonances" all the maxima of the $\pi^{\pm}p$ cross sections). If these relationships have a wider validity, they enable us to predict where to expect other resonances and what are their angular momenta.

The different shapes of the maxima in the $T = \frac{1}{2}$ and $T = \frac{3}{2}$ cross sections [apart from the isobar $\Delta(\frac{3}{2}, \frac{3}{2})$] suggests that they could have a different nature. The simplest hypothesis is to consider the $T = \frac{1}{2}$ resonances as excited levels of the nucleon N and the $T = \frac{3}{2}$ resonances as excited levels of the isobar Δ . The general idea of this Letter is to make the isobar play a role similar to that of the nucleon.

In Table I, in addition to nucleon¹ N and isobar Δ , we have written the seven known resonances with their masses M_i (i = 2T), the corresponding momenta P_{π} of incident pions, and their angular momenta J_i if known. We have labelled the columns listing the resonances by $\lambda = 1, 2, 3, \cdots$, in order of increasing mass; when J is known we find that

$$\lambda = J - T + 1, \tag{1}$$

the same relationship as stated by Kycia and

^{*}Work performed under the auspices of the U. S. Atomic Energy Commission.

	Nucleon	T = 1/2 Resonances						
$ \begin{array}{c} M_1 \; (\text{GeV}) \\ P_{\pi} \; (\text{GeV}/c) \\ J_1 \end{array} $	0.939 0 1/2	1.40 0.55 1/2	1.515 0.73 3/2	1.685 1.02 5/2	$(1.87)^{b}$ 1.40 $(7/2)^{b}$	2.19 2.08 (9/2) ^b	$(2.76)^{b}$ 3.60 $(11/2)^{b}$	$(4.23)^{b}$ 9.30 $(13/2)^{b}$
	Isobar			<i>T</i> =	3/2 Resonan	ces		
$M_{3} (GeV)$ $P_{\pi} (GeV/c)$ J_{3} $\lambda = J - T + 1$	1.238 0.30 3/2	1.655 0.98 (3/2) ^C 1	(1.75) ^C 1.18 (5/2) ^C 2	1.92 1.48 7/2 3	$(2.07)^{c}$ 1.80 $(9/2)^{c}$ 4	2.362.50(11/2)C5	(2.87) ^C 3.90 (13/2) ^C 6	(4.20) ^C 9.0 (15/2) ^C 7

Table I. Masses,^a corresponding pion momenta, and angular momenta^a of known πp resonances. Values in parentheses are predicted by this paper.

^aMasses and angular momenta are given by M. Roos, Phys. Letters <u>8</u>, 1 (1964); P. Bareyre <u>et al</u>., Phys. Letters 8, 137 (1964).

^bPredicted by Eq. (3).

^cPredicted by Eq. (2).

Riley.² For the $T = \frac{3}{2}$ row, we have only three resonances; with the rule (1), the 1.92-GeV resonance is in the $\lambda = 3$ column. The two highest resonances (of which we do not know their angular momenta, so λ can be 4, 5, ...) are tentatively written in the last column. If we put the "shoulder" of $\pi^+ p$ total cross section into the $\lambda = 1$ column,³ we find a quite simple relationship between the $T = \frac{1}{2}$ and $T = \frac{3}{2}$ resonances in the same column,

$$M_1(\lambda) = 1.111 M_8(\lambda) - 0.434 \text{ GeV}$$
 (2)

if M_i is expressed in GeV.⁴ Equation (2) fits all the pairs of known resonances with the same λ and the pair (N, Δ) with an accuracy better than one percent (Table II).

This relationship predicts the existence of a $T = \frac{3}{2}$ resonance for $\lambda = 2$ (or $J = \frac{5}{2}$) with a mass $M_3(2) = 1.75$ GeV. The corresponding momentum of the incident π^+ is 1.18 GeV/c. The shape of $\sigma_{tot}(\pi^+p)$ in this momentum region does not exclude the possibility of a structure which, without appearing as a defined bump, could widen the adjacent maxima at 0.98 and 1.48 GeV/c. Be-

Table II. Comparison between M_3 calculated from Eq. (2) and M_3 experimentally observed.

M_1 (exp.)	M_3 (calc.)	M_3 (exp.)	
0.939	1.236	1.238	
1.40	1.651	1.655	
1.515	1.754	•••	
1.685	1.907	1.92	
2.19	2.362	2.36	

sides, some preliminary results obtained at Saclay³ indicate that the coefficients A_0 and A_2 of the angular distribution $(d\sigma/d\Omega^*)_{\pi^0} = \sum A_n \times \cos^n \Theta^*$ of π^0 in the reaction $\pi^+ + p \to \pi^+ + p + \pi^0$ show maxima at 0.98 and near 1.2 GeV/c; the analysis of this angular distribution admits an interpretation of these maxima as resonances $D_{3/2}$ and $P_{5/2}$ between π^0 and isobar Δ .

Equation (2) permits one to find what $T = \frac{3}{2}$ resonance corresponds to a given $T = \frac{1}{2}$ resonance. A second observation might determine the sequence of $T = \frac{1}{2}$ resonances: If we plot the quantities $(1/M_1)^2$ versus λ we obtain a straight line for the first three resonances. The last one is also on this straight line if its angular momentum is $\frac{9}{2}$ (or $\lambda = 5$). There is no experimental evidence as yet allowing us to attribute $J = \frac{9}{2}$ or $\frac{7}{2}$ for this resonance with certainty; however, if we believe that $J = \frac{9}{2}$ for this point and that it is permitted to extrapolate the straight line, we obtain (Fig. 1)

$$(1/M_{1})^{2}$$

 $= \left[(0.588 \pm 0.006) - (0.076 \pm 0.003) \lambda \right] \text{GeV}^{-2}.$ (3)

We note that this fit provides a limiting value 7 for λ ; then

$$J_1 \le 13/2$$
 and $J_3 \le 15/2$.

If all the λ columns must be filled, we expect three new $T = \frac{1}{2}$ resonances and, with Eq. (2), three corresponding $T = \frac{3}{2}$ resonances. In Table I, we have added between parentheses the resonances predicted by Eqs. (2) and (3). Masses given in Table I for the expected new

resonances have an accuracy of the order of only 4 or 5%, because they depend on the precision of fit (3) and on determination of the last known resonance, 2.19 GeV.

A first indication of the possible validity of our scheme can be found in results about pion photoproduction at Cambridge⁵; there is some evidence for a $T = \frac{1}{2}$ resonance near 2.7 GeV which could fill the $(T = \frac{1}{2}, \lambda = 6)$ box of our Table I. One of us (B.T.) expresses his gratitude to Dr. J. P. Blewett and Dr. L. C. L. Yuan for hospitality.

*On leave of absence from Laboratoire de Physique Corpusculaire à Haute Energie, Centre d'Etudes Nucléaires, Saclay, France.

[†]Chercheur Institut Interuniversitaire des Sciences Nucléaires, Laboratoire des Hautes Energies, Bruxelles, Belgium.

¹We use for the masses of nucleon and pion the mean between the masses of their charged and neutral states $N = (m_p + m_n)/2 = 0.9388 \text{ GeV}, \ m_\pi = (m_\pi \pm m_{\pi^0})/2$ = 0.1373 GeV.

²T. Kycia and K. Riley, Phys. Rev. Letters <u>10</u>, 266 (1963).

³J. P. Merlo, private communication.

 4 We can also write Eq. (2) as

$$[M_1(\lambda) - N] = [(\Delta + m_{\pi})/\Delta][M_2(\lambda) - \Delta].$$

R. M. Sternheimer, working on a similar mass formula, pointed out to us that this formula could be written with only his two constants $m_{\pi} = 0.1373$ GeV and κ = 0.2347 GeV = N/4:

$$M_1(\lambda) = (10/9)M_3(\lambda) - 10m_{\pi} + 4\kappa.$$

⁵R. Alvarez, Z. Bar-Yam, W. Kern, D. Luckey, L. S. Osborne, S. Tazzari, and R. Fessel, Phys. Rev. Letters 12, 710 (1964).

APPARENT REGULARITY IN THE MASSES OF THE MESONS*

Laurie M. Brown Northwestern University, Evanston, Illinois (Received 6 May 1964)

Table I shows a set of masses calculated from the formula

$$m^{2} = a^{2} \left[2n + \frac{1}{4}Y^{2} - I(I+1) \right], \tag{1}$$

where a = 385 MeV, n is an integer, and the hypercharge and isospin (Y, I) take on the values they assume in an SU(3) meson octet, namely $(0, 0), (\pm 1, \frac{1}{2})$, and (0, 1). The most striking discrepancy in Table I, that the pion mass is given as zero, is related to the fact that $(472)^2$ is $\frac{3}{4}$ of $(544)^2$ or, to put it another way, that m_{π}^2 is small compared to the squares of the other particle masses and thus poorly determined. Aside from the pion, the worst agreement is for the K-meson mass (4.6%), all others being better than 3%. If the additive octet corrections δ indicated in Table I are applied (which may have the form ±5*n* MeV), the *K*-meson mass is still wrong by about 3.5%, but all other masses are within about 1%. For I = Y = 0, Eq. (1) without correction yields the following masses for $n = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$: 385, [668], [861], 1019 MeV. The masses in brackets are unfamiliar to the author, but 385 MeV is the mass of the σ meson¹ and 1019 MeV is the mass of the ϕ meson. The assignment of the vector octets (n = 2, 3) in Table I agree with that of Barger.² The only established meson known to the author and not yielded by Eq. (1) is the recently discovered "g" meson³ at 960 MeV, which does not appear to be a vector particle (otherwise it would be given by n = 3, I = Y = 0).

Equation (1) incorporates a number of features noted, at least in part, by other authors. As previously remarked, it gives the vector octet