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As the preliminary study' has shown, the usu-
al expression for the mean free path (mfp) of
electrons in nondegenerate plasmas (and accord-
ingly most other transport coefficients related
to the dissipative nature of the system such as
diffusion, viscosity, and thermal and electrical
conductivity) is not appropriate for describing
the actual state of affairs which is realized in
nondegenerate plasmas. Almost all theories on
transport properties so far developed have been
based on the assumption of binary collisions,
i.e., for sufficiently high-temperature plasmas
the inelastic scattering between a (test) particle
and the medium (electron gas) has been treated
within the Born approximation [see Fig. 1(a)].

We first review the result of the usual theory
following the language of the thermal Green’s
function.? Denoting the effective scattering cross
section corresponding to the process in Fig. 1(a)
by I'(p,q)dq, in which one electron with momen-
tum p is scattered to p—¢g within a range dq, then!

€(g,w)

where B is the inverse temperature 1/«kT; G,(p,
€)=[e-€,(p)]™?, the noninteracting Green’s func-
tion; v(g) = 4me®*%#®/q?, the bare Coulomb interac-
tion; and €(g,w) is the wave number and frequen-
cy-dependent dielectric constant at finite temper-
atures;
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Here €,(p)=p?/2m and f(p), the Fermi distribu-
tion function, reduces to the Maxwell distribu-
tion in the nondegenerate limit. In Eq. (1) w
=2mir/B and the summation is taken over all in-
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FIG. 1. Diagrams for the one-particle scattering
process. Solid lines indicate propagation of electrons
(or holes) and wavy lines correspond to the dynamical -
ly screened Coulomb interaction.

tegers 7.

In order to obtain, for example, the mfp [, it
is necessary to evaluate the average value of the
energy transfer, €,(p)—€,(p-g), over the scat-
tering probability (1); thus

{e (p) e (p "}r(p 7). @)

Consider first of all the scattering of one of the
plasma electrons. Equation (2) gives

4(21)Y2pet kmax
lo—1 = 5— 1n y (3)
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where 7 is the number density, v =p/m the veloc-
ity of the particle, vy =(mpB)~Y2, kp=(41ne®p)¥?,
and kpmyax is to be taken as mvp /% or (Be?)™" de-
pending on whether the Born approximation or
the quasiclassical approximation is valid.®* How-
ever, we may also use Eq. (2) to evaluate the
mfp (lo ) of a beam of electrons injected into the
plasma, provided that their density is much
smaller than that of the plasma electrons. Thus

B 4mne* kmax
1/lo = m2Vo4 In kB ’ (4)
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where V,, the velocity of the beam, is much
greater than the mean velocity of the plasma
electrons (vg). Equations (3) and (4) constitute
essentially the usual formulas,*

Now the crucial point is that even if the Born
approximation is valid, i.e., e*/lvp <1, the mfp
given by Eq. (3) or (4) would not be adequate for
existing plasmas just because there would ap-
pear an additional expansion parameter, namely,
the number of particles in the force range of the
screened Coulomb interaction, which is very
large.

In fact, if we take the next-higher Born approx-
imation [Figs. 1(b) and 1(c)], the cross section
for a process in which an electron p is scattered
to p—¢q and then rescattered to p—g—g’ by the
medium within ranges dq and dq’ is given by
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I'(p,q,q')dqdq’, where
rp,q,9')
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This consists of three types of scattering pro-
cesses. One of these gives the vertex correc-
tion and one the self-energy correction to the
Born (or binary) scattering process (1), both be-
ing of minor importance. The most important
part is exclusively the three-body collision pro-
cess which is illustrated in Fig. 2.
Corresponding to Eq. (2), taking the average of
the energy transfer, €,(p)-€,(p—q-q’), over (5)
gives the mfp /;
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Depending on whether the electron is a plasma
electron or beam electron, Eq. (6) (its main
term) yields®
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A remarkable result is obtained if one consid-
ers the ratio ,/I. For an electron with the mean
thermal velocity
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except for a numerical tactor of order unity.
The physical reason of this is clear: The factor
(e"’/l‘fivT)2 expresses the higher order effect of

FIG. 2. Three-body collision processes resulting
from Fig. 1(b) and (c). Dashed lines indicate inter-
mediate states of real transitions in which energy is
conserved.
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the Coulomb interaction as a perturbation,! and
the inclusion of three-body collisions gives the
other factor, n/kp®, namely, the number of par-
ticles in the force range. For plasmas with kp
~10* cm™! (and when e®/fivp <1 is satisfied so
that perturbation theory may be applicable), our
result (7) gives a very much shorter (~10~*
times) mfp than the usual result (3).

For the beam electrons,

RV R A (10)

When applied to the ancient but notable Lang-
muir’s experiment,® Eq. (10) explains the situa-
tion quite well. If we take kp~10° cm™' and V,
~4vr, then ZOB/IE"~104,7 which is just the re-
quired order to resolve the Langmuir paradox.®,®

Evaluation of the related transport coefficients
is being planned along the present lines. A more
serious problem left for the future is the exami-
nation of the convergence of the perturbation ex-
pansion with respect to n/kp®. If the actual plas-
mas are found to be the strong coupling limit of
this parameter, perturbation approach can never
be applied to them. A more detailed account of
this work will be published elsewhere.

The author would like to thank Professor H. Ka-
nazawa for valuable discussions.
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5The complete expression for [ is given by
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The above expression for [ ! reduces to Eq. (7) in

the limiting case x <1 [F(x) ~ (16/9V mx'] and to Eq. (8)
when x »1 [F(x)—~1].
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"A value for the mfp of the same order of magnitude
as this has recently been derived from a quite differ-
ent analysis based on the nonlinear treatment. See
the review article by Y. Klimontvich and V. P. Silin,
in Plasma Physics, edited by J. E. Drummond (Mc-

Graw-Hill Publishing Company, Inc., New York,
1961), Chap. 2.

8See the review article by J. E. Drummond in
Plasma Physics, edited by J. E. Drummond (Mc-
Graw-Hill Publishing Company, Inc., New York,
1961), p. 2.
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It is well known that the measurement of the
angular correlation of the two photons emitted
during positron annihilation in solids can provide
information concerning the momentum distribu-
tion of the electrons annihilating with the posi-
tron.! Positron annihilation with spin-aligned
electrons in ferromagnets was first used by Han-
na and Preston? for positron-spin analysis.

They also indicated how such measurements can
yield information regarding the momentum spec-
trum of the ferromagnetic electrons.® Their use
of cylindrical geometry, particularly in its inte-
gral form, did not reveal some details of inter-
est to the study of ferromagnetism; they also re-
ported a null effect in nickel. Lovas® used paral-
lel-slit geometry in a similar experiment, but
with insufficient angular resolution and statistics.
We have performed several measurements with
improved statistics using a parallel-slit system.®

Recently Mijnarends and Hambro® also an-
nounced new, independent measurements in iron
and interpreted their results as definite proof for
the polarization of the conduction electrons. In
this Letter we would like to present some of our
new data in iron and nickel and to interpret the
results in a rather different light. The experi-
mental setup used was similar to one described
previously,” with the addition of an electromag-
net used to saturate the ferromagnetic samples.
Positrons from an 8-mCi Na?? source were col-
limated by a circular aperture and allowed to
strike the %—inch diameter samples. The mag-
netic field was set parallel () or antiparallel
(¥) to the incident positron momentum. The pho-
tons from positron-electron singlet annihilation
were counted by the 7-inch long Nal crystals be-
hind parallel lead-slit collimators. The slits
subtended an angle of 0.75 mrad or 2 mrad in
various runs. At each angle two counting rates,
Ny (8) and N,(8), were obtained with an automat-
ic system by several cyclings through the pre-

determined angular range.
The model used in describing the observed
N,(6)-N (6)
p (9) - __?___t~
N, (6)+N_ (6)
] ¥
assumes that the polarized positrons slow down
to their ground state ¢ +(f‘) in the crystal lattice
but that their original spin direction is not
changed appreciably.® Let the annihilation with
the /th electron result in a momentum distribu-
tion
o (6)=const| fu F)u_@)e PT|?
;(B) = cons fwl r)w+(r)e ,
where zpl(F) is the Ilth-electron wave function; the
positron-electron interaction is neglected. The
parallel-slit setup integrates over dp, and dpy,
and one obtains

n(p,=mc6)= [Jo,B)p dp ,

m being the mass of the electron. Using the in-
cident positron momentum direction as the axis
of quantization, let P, and P; be the positron and
the lth-electron polarizations (P =0, unpolarized
particle, P=+1, completely polarized particle
along and opposite the quantization axis). The
probability for a spin-singlet overlap with the

lth electron is then proportional to i(1% Ple)w !
and that for a spin-triplet overlap is proportional
to @+ PyPyyw; where wy= [ny(p,)dp,; wy is ob-
viously proportional to [1y, (F)¢;(F)?dF. Thus
we find that with the superimposed magnetic
field ¢ or +

Ny (O=Cy T, (A%P P Iny(6). (1)

It is to be noted that in ferromagnets the excess
spin polarization is a negative number in the
above notation. We shall return to the constants
C' and C*.
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