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Recently attention has been drawn toward the
possibility that long organic molecules might ex-
hibit superconductivity. ' At the same time the
question has, however, been raised of whether
or not there might be special effects associated
with the case of one-dimensional motion which
might make the occurence of superconductivity
in one dimension quite different from its occur-
rence in three dimensions. Indeed, there is a
well-known theorem based on thermodynamic con-
siderations that no phase exhibiting long-range
order can exist in one dimension. 3 It has been
suggested that this theorem is sufficiently gener-
al to cover superconductive ordering. ' The the-
orem is predicated on the assumption of short-
range forces and it may be argued that the Ham-
iltonian which forms the basis of the BCS' theory
of superconductivity essentially involves an in-
finite-range force. But the actual physical sys-
tem which the BCS Hgmiltonian is intended to de-
scribe does, of course, only contain forces of
limited range, and there are important modifica-
tions of the BCS theory which are required to
take into account the terms in the interaction
Hamiltonian which are omitted from. the reduced
Hamiltonian of BCS. These terms, as noted by
Bogoliubov, Tolmachev, and Shirkov, e Anderson, '
Rickayzen, ' and Prange' make it possible for the
system to exhibit compressional modes of vibra-
tion and to satisfy the requirements of gauge in-
variance. The purpose of this note is to point out

that the compressional modes play a much more
dominant role in one dimension than they do in
three dimensions, and prevent the establishment
of the long-range order which is required for
super conductive phenomena.

Let the required compressional modes of vi-
bration of particles which are constrained to move
in only one direction, say along the x axis, be de-
scribed by the creation and annihilation operators
a~4 and a~ where k is the wave number of the run-
ning wave. (Throughout this paper we choose
units in which Pianck's constant equals 2w. ) In
terms of these quantized operators, the particle
density operator at the position x has the follow-
ing standard expansion:

where m is the mass of the individual fermions,
n the linear particie density, l. the length of
quantization, and ~& the frequencty of kth mode.
The equation of continuity requires that there be
a velocity field present which is given by the fol-
lowing simple equation:

m 'g(x) = vp(x)/n.

v = &uk/k is the velocity of propagation of the com-
pressional waves in the long-wavelength limit.
q(x) can be interpreted as the local value of the
mean pairing momentum of the fermions in the
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superfluid, and is proportional to the gradient of
the phase of the superfluid. Consequently, we
can determine the phase of the superfluid at any
point x by simply integrating over the local val-
ues of the mean pairing momentum:

y(x) = 2 J q(x)dx

=-2mvg' (2mmu L) " (a &+a )e . (3)

As discussed by Yang, '0 the characteristic
superconducting properties of a metal in its su-
perconductive state are a result of a nonzero
value of a certain Green's function G(x, x') for
large values of the difference x-x'. This Green's
function is defined by the equation

G(x, x') = (g (x)g (x)P t(x')g t(x')),

= (Nl g (x)P (x) I N+ 2)

and can be dropped.
The point of this paper is that the value of M

in Eq. (7) is infinitely large for one-dimensional
geometry and consequently that the strength of
the long-range order is vanishingly small. This
is most readily seen by noting that the present
problem is mathematically identical to the famil-
iar problem posed by the question of long-range
order in a one-dimensional vibrating lattice.
Using the same expression for the quantized den-
sity operator as in Eq. (1), it is possible here,
in dealing with a discrete lattice, to introduce
the displacement $(x) of a lattice point from its
unperturbed position x. The divergence of this
displacement operator is proportional to the den-
sity, and consequently the displacement operator
has the following expansion:

((x) =Q (2mna& L) (a t+a )e . (6)

x(Ã+2I g 'f(x)g t(x)IN)+ ~ ~ ~,

=F(x)F~(x)+ ~ ~ ~, (4)

where the arrows indicate electron spin orienta-
tion and the terms not exhibited in the closure
expansion do not contribute to the "off-diagonal
long-range order. " The matrix elements are
taken between the states of N and %+2 fermions
and the notation of Gor'kov" for the matrix ele-
ment of the pair annihilation operator has been
introduced. In order for the first term in Eq. (4)
to give long-range order, it is necessary that the
Fourier transform of the Gor'kov function should
possess a delta-function spike. As there is no
preferred value of mean pairing momentum in
the present problem, this spike will necessarily
have to be located at the origin in reciprocal
space. Writing the Gor'kov function in terms of
its modulus and phase,

we obtain the strength of the delta function from
the integral

1 -M
Fo =—F (x)dx = he0 (6)

where the exponential factor is defined by the ex-
pression

-M
( iy(x))

The average is to be taken over the equilibrium
ensemble of states. Because of the translational
invariance, the spatial integration is redundant

If in this problem we substitute for the value of
the reciprocal lattice vector

G =2mv, (10)

then we see that in Eq. (7) we are dealing simply
with the Debye-%aller factor of a one-dimension-
al lattice. It is well known that the Debye-%aller
factor vanishes for this case, as there is no
long-range lattice order for one-dimensional
geometry. For the sake of completeness, we
merely remind the reader that this can be seen
from the expansion of the exponential functions
in Eq. (9). Identification of the first nontrivial
terms on the two sides of the equation gives

G2 Gm dA-'(5 &+ l) =

where in passing to the integral we restrict the
integration to only positive values of the wave
number, and have taken the quantum mechanical
expectation value over the ground state of the
system. Then all of the occupation numbers for
the oscillators vanish and only the zero-point
motion contributes to the smearing out of the
lattice in reciprocal space. Because of the log-

Now suppose that the undisplaced lattice points
have a spacing corresponding to the reciprocal
lattice vector G. Then the square root of the De-
bye-%aller factor ~ for the vibrating lattice is
given by the expression

-M 1, -iG$(x),
e =—(e )dx,L
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arithmic divergence in the long-wavelength lim-
it,"this smearing is complete and no vestige of
long-range order remains. "
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Bommel and Dransfeld and Jacobsen have
demonstrated that microwave phonons can be gen-
erated by the piezoelectric effect at the end sur-
face of quartz placed in the electric field of a re-
entrant cavity. The present paper shows that
second and third harmonics of the fundamental
microwave frequency are also generated. The
experiment was originally undertaken to measure
the higher order elastic constants which are im-
portant in the "collinear processes'~~' by which
a longitudinal acoustic wave interacts with ther-
mal phonons. The nonlinearity due to this inter-
action, however, was found to be much smaller
than that present in the generation of the acoustic
waves themselves. Second-harmonic generation
in nonpiezoelectric Z-cut quartz has also been
observed. It was much smaller than in piezo-

electric quartz and of the magnitude to have been
caused by the electric stress. This result is
contrary to some of Shiren's' qualitative mea-
surements of harmonic generation in piezoelec-
tric quartz, which were attributed to the electric
stress, and shows that acoustic wave generation
is not limited to the relatively rare piezoelectric
materials.

Microwave phonons are generated at the end
surface of a piezoelectric quartz rod placed in
the high electric field region of a re-entrant 4, 5-
Gc/sec cavity shown in Fig. 1. This cavity is
excited by a 0.5-p, sec pulse of electromagnetic
energy which has passed through a low-pass fil-
ter to eliminate any harmonics above 4.5 Gc/sec
which might have been present in the pulsed
microwave source. The second-harmonic content


