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We have found the superconducting transition
temperature (Tc) of dilute alloys based on zinc
to vary strongly with mean free path, indicating
an anisotropy of the energy gap much larger than
that observed for other metals, while at constant
mean free path Tc varies rapidly with electron/
atom ratio (x). A simple model for the gap aniso-
tropy, involving an enhanced value of the gap for
the portions of the Fermi surface that have over-
lapped the (002) faces of the Brillouin zone,
leads to a dependence of Tc on electron concen-
tration close to that observed.

The transition temperatures of single-phase
solid-solution alloys are shown in Fig. 1, which
includes data for alloys of the atomic composition
97.5% Zn, y% Al, and (2.5-y)$0 Ag, for which
the mean free path varies only slightly with y.
T~ was determined inductively in a helium-3 cry-
ostat, the temperatures being measured by a 30-
ohm Speer carbon resistor whose calibration
curve was corrected slightly for each run by ob-
serving the transitions of pure zinc and pure cad-
mium. The widths of the transitions of the alloys
ranged up to 20 millidegrees; the accuracy of
measurement of the mean temperature is esti-
mated at +5 mdeg.

The dependence of T~ on mean free path has
been treated theoretically by several authors, '&'

following Anderson's original suggestion' that it
is due to the reduction of energy-gap anisotropy
brought about by impurity scattering. Markowitz
and Kadanoff' (hereafter MK) take account of the
anisotropy by choosing a simple form for the ma-
trix elements coupling pairs formed from states
with momenta +p and +p':

1'--, =-(p' -p'i 1'ip, -p)pp'

= [1+a(n)]V [1+a(Q')],
av

sT = (a') T f(y) +k(x-2).c ave (2)

where 0 is a unit vector along P and the mean
value aav is zero. This choice leads to an energy
gap varying as [1+a(Q)]. We have assumed that
the difference (b,Tc) between the transition tem-
peratures of an alloy and the pure metal is the
sum of two terms, one depending on mean free
path through the function I(y) calculated by MK,
the other proportional to the electron/atom ratio
(x); so that
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FIG. 1. Experimental values (points) for T~ of

binary and ternary zinc alloys plotted against electron
concentration, x (electrons/atom), with theoretical
values (curves) calculated from (1) for binary Zn-Al
and Zn-Ag and ternary Zn-Ag-Al alloys using the
values of parameters given in the text. Filled circles:
Zn-Ag-Al; open circles: Zn-Ag; squares: Zn-Al;
half-filled circles: Zn-Au (vertical) and Zn-Cu (hori-
zontal).

k is assumed to be the same for all the solutes
we used, and g =ff/kffTcTa where Ta is a time
characteristic of the effect on energy-gap aniso-
tropy of electron scattering. If we suppose that
T~ is the same as the relaxation time associated
with electrical conduction, then we can use the
results of Fawcett4 to estimate for zinc y = 66p
where p is the residual resistivity in p, Q-cm.

The curves in Fig. 1 have been calculated for
silver and aluminum in zinc using for the values
of the parameters

k = 5.8'K (electrons/atom)

(a') = 0.047, T = 0.845'K.
av c

There is close agreement between our results
and the calculated curves, even though k/Tc
and (a')av are exceptionally large (more than
twice the values derived from data for tin' and
indium' alloys). The data for the binary Au and
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Cu alloys may be compared with the curve for Ag,
since their calculated curves would differ from
it by less than 0.015 K.

We turn now to a discussion of the origin of the
term 4, that is, of the sensitivity of T~ to elec-
tron concentration at constant mean free path.
Use of the BCS expression

T = 1.148 exp[-1/N (E)V ]c D av

and a free-electron variation of N(E), the density
of states, gives a variation of T~ with x of only
0.8'K (electrons/atom) '. The success of a near-
ly-free-electron model in interpretations of prop-
erties of zinc depending on the detailed topology
of the Fermi surface means that a breakdown of
our assumption about N(E) is unlikely.

The variation of Debye temperature (8D) with
x is less easily estimated; we shall assume that
it makes only a minor contribution to k. A naive
application of the Lindemann melting point rela-
tion would give a small decrease of T~ with in-
creasing x.

We are led to consider whether variation of
Vav with x, rather than of N(E) or 8D, may not
be responsible for the greater part of the quan-
tity k, and have investigated a simple model by
the use of which kgp the variation of T~ caused
by changes of V with electron concentration,
can be calculated from the value of (a')av for the
pure metal.

Since the anisotropy observed in the (001)
plane~ is small, the large value of (a2) v implies
that the energy gap for directions close to [001]
is very different from the average value. This is
the direction in which the Fermi surface overlaps
the (002) face of the Brillouin zone. (The second
zone for the close-packed-hexagonal lattice in
the extended zone scheme is shown in Fig. 2 to-
gether with the segments of the free-electron
sphere for x =2 cut off by the zone planes. ) We
shall write Eq. (1) as

V, = V, = (I+a )V (I +a, ),
pp pal p5 pp1 av ps

where ng = 2 when p lies in the segment of the
Fermi sphere overlapping the (002) faces of the
zone, m =1 when p lies anywhere else, and for a
given m, a is assumed constant. We further
assume that V» and V» are independent of elec-
tron concentration. With increasing electron con-
centration the solid angle 2~ subtended at the
origin by the regions 2 increases, partly because
of the increase in diameter, but mainly because
the Brillouin zone contracts along the [001] direc-

FIG. 2. The Brillouin zone for the close-packed
hexagonal lattice vrith c/a = 1.83 and a free-electron
Fermi surface for 2 electrons/atom.

tion. In terms of the c/a ratio (r) of the hexagonal
crystal lattice

I-&u/2w = (3.63/xr')"'= b, say.

Then

(a') =ba +(I-b)a '
av 1 2

and

V = V [b+ (1-b) v'"]'

where v = V»/V». We obtain the result

T ~V
k

N(E)V 'sx
av

2T (1 2sr) 1
]-+—I

3N(E)V I,x r Sx) 1-b + (v'"-1)
av

= 4.0'K (electrons/atom)

Using (g2) = b(1-b)(1-v ')'[b + (1-b)v ~']
=0.047, we find V»=2.65V». 6)D was taken as
325 K and the crystallographic parameters were
taken to be r = 1.83 (at 4.2'K) and dr/dx = 1.77 (elec-
trons/atom) ', giving b = 0.176.

Combining this value of k~ with a free-electron
variation of N(E) and ignoring any effects of
changes in 8D, the calculated value of k is 4.8 K.
Further support for this model comes from re-
lated work on cadmium alloys; and a fuller ac-
count of all this work will be published elsewhere.

Brillouin-zone overlaps within solid-solution
ranges have previously been suggested "as a
source of anomalies in T-composition curves;
and the present work, the first on alloys of com-
paratively simple electronic structure, is in
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strong support of such suggestions.
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Recently attention has been drawn toward the
possibility that long organic molecules might ex-
hibit superconductivity. ' At the same time the
question has, however, been raised of whether
or not there might be special effects associated
with the case of one-dimensional motion which
might make the occurence of superconductivity
in one dimension quite different from its occur-
rence in three dimensions. Indeed, there is a
well-known theorem based on thermodynamic con-
siderations that no phase exhibiting long-range
order can exist in one dimension. 3 It has been
suggested that this theorem is sufficiently gener-
al to cover superconductive ordering. ' The the-
orem is predicated on the assumption of short-
range forces and it may be argued that the Ham-
iltonian which forms the basis of the BCS' theory
of superconductivity essentially involves an in-
finite-range force. But the actual physical sys-
tem which the BCS Hgmiltonian is intended to de-
scribe does, of course, only contain forces of
limited range, and there are important modifica-
tions of the BCS theory which are required to
take into account the terms in the interaction
Hamiltonian which are omitted from. the reduced
Hamiltonian of BCS. These terms, as noted by
Bogoliubov, Tolmachev, and Shirkov, e Anderson, '
Rickayzen, ' and Prange' make it possible for the
system to exhibit compressional modes of vibra-
tion and to satisfy the requirements of gauge in-
variance. The purpose of this note is to point out

that the compressional modes play a much more
dominant role in one dimension than they do in
three dimensions, and prevent the establishment
of the long-range order which is required for
super conductive phenomena.

Let the required compressional modes of vi-
bration of particles which are constrained to move
in only one direction, say along the x axis, be de-
scribed by the creation and annihilation operators
a~4 and a~ where k is the wave number of the run-
ning wave. (Throughout this paper we choose
units in which Pianck's constant equals 2w. ) In
terms of these quantized operators, the particle
density operator at the position x has the follow-
ing standard expansion:

where m is the mass of the individual fermions,
n the linear particie density, l. the length of
quantization, and ~& the frequencty of kth mode.
The equation of continuity requires that there be
a velocity field present which is given by the fol-
lowing simple equation:

m 'g(x) = vp(x)/n.

v = &uk/k is the velocity of propagation of the com-
pressional waves in the long-wavelength limit.
q(x) can be interpreted as the local value of the
mean pairing momentum of the fermions in the
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