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In a recent Letter' it was pointed out that the
Goldstone theorem~~3 is not valid in supercon-
ductivity in the presence of long-range interac-
tions. It was then speculated that the proofs of
this theorem in relativistic theories are also mis-
leading and that the consistency of theories with
broken symmetry may follow through the exis-
tence of spurious states [0') which are not the
limiting states of any branch of the excitation
spectrum, and hence cannot be considered as
particle states. While we have no quarrel with
this possibility, we would like to point out that
there is a large class of theories which will sup-
port a broken symmetry through relations of the
sort

(0, qty4) Iq, 0) =C(ri)

explicitly because of the natural presence of zero-
mass particles in the theory, and where the ob-
jections raised in this Letter are not valid. %e
have introduced a numerical parameter g into the
above equation to distinguish explicitly the broken-
symmetry vacuum states of this equation from the
usual vacuum states (0) for which the expectation
value of yg) vanishes. C(q) is a nonvanishing
numerical function of g whose exact form depends
on the method of construction of I q, 0) from [0).
Our approach will involve a change in viewpoint
from that normally associated with broken sym-
metries. Usually, one regards the broken sym-
metry requirements as doing violence to the basic

structure of the theory in such a way as to pick an
alternative solution to the field equations and in
so doing inducing new zero-energy states in order
to guarantee the consistency of requirement (1)
with the operator symmetries of the problem. It
is an explicit mark of usual theories that they will
not support condition (1) when the interaction is
turned off and that the perturbation solutions ex-
ploit the nonlinearity of the interaction. This is
not the case in some examples we present.

We shall show that there is a class of theories
in which it is possible to construct exactly the
state [ q, 0) satisfying Eq. (1) from the state [0)
for which

(0(y t0) =0.

This is done without modifying the energy spectra
or the multiplicity of states and hence without in-
troducing any spurious states of the sort [0').
A remarkable result that we obtain is that ordi-
nary electrodynamics with no bare photon mass
belongs to this class. We then conclude as an
exact consequence of the field equations that
there is a zero-mass particle present in inter-
acting electrodynamics which is identified as the
photon.

The mechanism to be examined is quite simple.
Suppose that in addition to the normally conserved
quantities such as energy-momentum and angular
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momentum there exists a Hermitian operator

L (xo) =fdsxl (x) =fd'xq(x)l(x)
7l

which, in the limit that the function q(x} is con-
stant, is independent of time and hence commutes
with the energy operator P . We shall denote the
operator in this limit as L . The limit g(x) =con-
stant is taken by assuming that it has nearly the
constant value g over a spatial volume, with a
sharp dropoff to zero at the edges of the volume.
We then let the volume become infinite. This
device insures that the operator defined by (2)
converges for t)(x} not constant. We shall not
bother with details of this procedure, but assume
that it is possible to proceed formally. It is em-
phasized, however, that care must be exercised
when derivatives of q are taken. Assume for
some field operator y(X) that

(0 i exp(iL )y(x) exp(-iL ) Io) =C(g).
n 7l

If a new set of states is defined by

I q, a) = exp(-iL ) i a),

(4)

Eq. (4) may be rewritten as

(o, qiq(x) iq, o) =c(q).

Note that since q is constant the states ig, 0) have
the same energy as the states ia). If the addi-
tional assumption is made that there is a contin-
uous symmetry S which essentially has the be-
havior

This use of (3) to prove the presence of zero-
mass particles is very direct, but does not estab-
lish the connection with ordinary broken symme-
try theories. To do this note that from (3) it fol-
lows (g=constant) that

i[L, y(x)] =C(g). (3) i '[S, V]=q,

Here C is a numerical function. For convenience
we have suppressed all indices referring to de-
grees of freedom. Usually the existence of L&
is connected with the invariance of the Lagran-
gian under the transformation y -y+ g. E is

2l
then the time component of a conserved current
which is essentially the momentum canonically
conjugate to y.

It is now possible to conclude that there are
zero-mass particles present in the theory. We
use the usual set of states {ia)[containing the
vacuum for which the physical symmetries have
the property Sio) =0. Note that L i0) &0. It is
emphasized that these states occur in a perfectly
normal type of theory and hence presumably do
not contain spurious states of the type lo') ~

Therefore, we may proceed without fear in the
fashion ordinarily used to prove the Goldstone
theorem. From (3) it follows that

i fd'y&Oi[I (y},V(x}]io&=C(n).

If we write the Lehmann representation for

&o i [I (y), y(x}]iO),

it is seen after performing the spatial integration
to produce C(q} that the requirement that this in-
tegrated quantity is independent of y -x guaran-
tees that a zero-mass particle is present. This
is the essential observation'" made in proofs of
the Goldstone theorem. Henceforth, we shall
denote the application of such a procedure as
operation G.

it follows that

&0, ~«-'[s, ~]i~, o)

= i 'P [(0, ri i S i ri, a)(a, q i y I q, 0)

—(0, riiy ig, a)(a, qiS i', 0)]=C(g). (5)

Since the states i ri, a) are characterized by the
same spectrum as the states ia), and this spec-
trum does not have any spurious states i 0') of
the sort discussed by Klein and Lee, ' operation G
may be applied without fear to Eq. (5). Thus, we
have established in the usual manner that a zero-
mass particle is present which carries the same
quantum numbers as y(x). It is now possible to
understand the physics involved in forming the
state iq, a). The operator l&(x) of Eq. (2) cre-
ates particles of zero mass with the same quan-
tum numbers as y(x). The integration over space
in (2) insures that I is an operator which creates
particles of zero energy. Thus the operator
exp(il ) when applied to ia) modifies this state
by the superposition of an infinite number of zero-
energy particles.

This transformation does not change the physi-
cal information contained in the states, but mere-
ly relaxes the usual requirement that S io) =0. A
trivial but extremely enlightening example of a
"broken symmetry" occurring through the possibil-
ity of finding a conserved operator is the free
spin-zero charged field described by the Hermi-
tian operator
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through the Lagrange density

P+ &P
x

it follows from the canonical commutation rela-
tions that

i[L, y(x)]=)}.

Hence a zero-mass particle is present. As we

already have seen, we define the states

I)},a) = exp( ifd x )}y-o) [a&.

Note that the previous interpretation of an infinite
superposition of soft quanta is valid here. It only
remains to observe that the conserved charge

@=i fd x yqy,
where q = a„has the property that

[@ el=-~~
The next example is the free electromagnetic

field. From the requirements of classical gauge
invariance, it would seem legitimate to demand
that

(OiA "(x) iO& =C",

where C~ is a number. As a matter of conven-
tion, the states and operators of quantum electro-
dynamics are usually chosen to exclude this pos-
sibility. The possibility may be reintroduced by
noting that since

"=0,

the quantity

(6)

is a constant of the motion in the limit that q& is

with the usual canonical commutation relations

i '[y(y), y'(x)]=6'(x -y), etc. , x'=y'.

From the field equations it is seen that the re-
quirement (0lylo& go necessitates that p, =0.
With p, '=0, 2 is invariant under the transforma-
tion y —y+ q. We may transform this informa-
tion to the states )a& by going through the pro-
cedure outlined in the preceding paragraphs.
With p, '=0 the field equations require that 8

=0. Consequently fd~x rpo(x) is a constant of the
motion. Making the identification

L = fd'x y'(x),

constant. The form that C"()}) takes, where

i[L,A (x)]=C (x),

is dependent on the particular gauge of A. In gen-
eral, C&()}) is a nonvanishing linear function of )}
and we conclude a zero-mass particle is present.
In the Lorentz gauge it is easily established that
C"()})=)} if we define )}0=0. In radiation gauge
one obtains similar results. This emphasizes the
fact that this effect is the result of the physical
transverse particle. More explicit analysis of
the structures involved makes this point trans-
parent. Proceeding as before, the new states
))},a& are defined by

3 MO
[)},a) =exp(-ifd x)} w ) [a&.

The symmetry S that is broken in this case is
Lorentz invariance since

i '[J"',A'(x)]=g""A'(x) -g"A "(x)+s'~"'

+(x S -x S )A
p. v v p.

In this expression the explicit form of A~v de-
pends on the gauge chosen for A~. Taking the
vacuum expectation and passing to the limit g
= constant we find

(0)}!i [J,A (x)] ))}0&

v v~=g C -g C

+ s (0, )}I A i )},0) .
In all conventional gauges

s'(o, g)A"'tg, o&=o.

In a more explicit analysis of the left-hand side
of (7) it is necessary to exercise some care in
passing to the limit g =constant when using con-
ventional forms of JI"v. We may apply operation
G to Eq. (7) and again conclude there are zero-
mass photons present.

A far less trivial example is the case of inter-
acting electrodynamics. There 8 E~I"=j~ and
hence the quantity

exp(L ) = fd x)} [e -x j ] (6)
3 MO k.O

is independent of time in the limit g~
= constant.

This relation is a simple generalization of (6) to
the case of interacting electrodynamics.

It is particularly convenient since in most
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[j (x), A (y)10

We may therefore carry over the preceding analy-
sis because

[exp(L ),A (y))=[I. , A (y)].
7l'

The form of Eq. (7) is unchanged in the presence
of interactions and hence we may again apply
operation G and conclude that there is a zero-
mass particle present in ordinary electrodynam-
ics with the same quantum numbers as A~(x).
We emphasize that this particle is not always
directly associated with the "free-field photon. "
In the case that the coupling is very large, 4 it
might be possible to produce zero-mass "posi-
tronium" which will dominate contributions to
the consistency of Eq. (7). If zero-mass Fermi
particles are present, we may have essentially
the same situation. In the Schwinger model the
photon has no dynamical degrees of freedom and
a radiation gauge formulation fails for a con-
served current. However, a zero-mass particle
is present because of arguments related to the
ones given above. ' It would be particularly in-
teresting if these arguments could be extended
to the Yang-Mills field. To the present, such
attempts have been unsuccessful. It should be
pointed out that any interference that transforma-
tion (8) makes with I orentz invariance when used
to form iq, a) is trivial and may be handled with
ease in more explicit calculations. A detailed
paper discussing gauge problems, the consis-
tency of (7) with the field equations, and more
explicit consequences of Eq. (7) is in prepara-
tion.

The theories considered so far are character-
ized by working in the free-field limit. On the
other hand, broken symmetry theories of pri-
mary interest at present are such that the free
field cannot support the broken symmetry. It is
of great concern, then, to know if any of these
theories are of types that can be characterized
by time-independent transformations I „and

hence certainly have zero-mass states. This
characterization is almost certainly not possible
for the existing theories and hence we have not
constructed a general proof of the Goldstone
theorem. However, the above emphasizes the
fact that all general arguments presently avail-
able to insure the presence of zero-mass parti-
cles are equivalent to the broken-symmetry pro-
cedure. Therefore, it is not desirable to dis-
miss lightly the power of the Goldstone theorem.
%ork which will be published elsewhere suggests
that in a fully quantized relativistic theory it is
highly probable, where spurious states i0') occur
to guarantee the consistency of a theory, that they
are linked to the presence of a zero-mass parti-
cle.

I am indebted to W'. Gilbert for many discus-
sions on broken symmetries and the suggestion
that the photon mass might be explained through
a broken symmetry. I enjoyed the benefit of
many very enlightening conversations with R. F.
Streater on the topics discussed in this paper.
I would like to thank John M. Charap and P. T.
Matthews for useful comments and for reading
the manuscript, and Professor AMus Salam for
hospitality.
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