$$f_{_{\boldsymbol{V}}}(\Xi^{-}\Lambda)=(\tfrac{3}{2})^{1/2},\ f_{_{\boldsymbol{V}}}(\Xi^{0}\Sigma^{+})=1,\ f_{_{\boldsymbol{V}}}(\Xi^{-}\Sigma^{0})=1/\sqrt{2};$$

where $f_V(\Sigma^-n)$ is the vector coupling for $\Sigma^- \to n$ + leptons. From β decay of O^{14} and Al^{26} we obtain $\cos\theta=0.980$ or $\sin\theta=0.20$ [see J. Sakurai, Phys. Rev. Letters $\underline{12}$, 79 (1964)]. From the recent values $R=(1.07\pm0.13)\times10^{-3}$ for the branching ratio and $f_A/f_V=1.03$ for Λ β decay (V. G. Lind, T. O. Binford, M. L. Good, and D. Stern, to be published), we find $|f_V(\Lambda p)|=1.29\pm0.13$ in excellent agreement with $f_V=-(\frac{3}{2})^{1/2}=-1.22$. For $K^0\to\pi^-+e^++\nu$ we write a matrix element $(1/\sqrt{2})(G\sin\theta)f(p+q)_\mu\overline{u}_e\gamma_\mu\times(1+\gamma_5)u_\nu$. The prediction is f=1. From data on K_2^0 [D. Luers, I. S. Mittra, W. J. Willis, and S. S. Yamamoto, Phys. Rev. $\underline{133}$, B1276 (1964); Proceedings of the Sienna International Conference on Elementary

<u>Particles</u> (Società Italiana di Fisica, Bologna, Italy, 1963), Vol. 1, p. 23; for the branching ratio we take a weighted average of 0.56 ± 0.03 , we obtain $|f| = 0.96 \pm 0.20$. From K^+ data [B. Roe et al., Phys. Rev. Letters 7, 346 (1961)] using $\Delta T = \frac{1}{2}$ rule, we obtain instead $|f| = 1.18 \pm 0.06$, in apparent disagreement with the predicted value and with the K_2^0 data.

predicted value and with the K_2^0 data.

The amplitude for $\gamma \to \overline{\Sigma}^0 + \Sigma^0$ can be expressed by charge independence in terms of the other $\overline{\Sigma}\Sigma$ amplitudes; the (first-class) amplitude for $\gamma \to \overline{\Sigma}^0 + \Lambda$ is equal to the amplitude for $\gamma \to \overline{\Lambda} + \Sigma^0$ and is expressed as a linear combination of the other amplitudes for neutral baryons [Okubo's relation: S. Okubo, Phys. Letters $\underline{4}$, 14 (1963)].

⁸L. Wolfenstein, to be published.

ERRATUM

NUCLEAR SPIN ORDERING IN ADSORBED He³. M. H. Lambert [Phys. Rev. Letters 12, 67 (1964)].

Further experiments have shown that the observed specific heat anomaly is not due to spin ordering. A complete report is in preparation.