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continuation. The compact 6, is manifestly of
rank two and semisimple. From this it follows
immediately that the group is, in fact, simple
and is locally isomorphic to SU(3)! For com-
pleteness we exhibit the metrics which admit a
Gs:

d&'=&I ~+ 2 X I I

e+ Z J II 2 dy
i k &=i i &&=i i
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where e =+1, the upper sign referring to the
space which admits the compact group. ~

%e thus observe that the requirement that the
physics of baryons be represented on the most
symmetric V, which is not geometrically trivial
leads uniquely to a consideration of a group lo-
cally isomorphic to SU(3), and to a space which
is necessarily of positive definite metric and a
solution of the Einstein field equations with cos-
mological constant. In addition we are now in a
position to state the following result: If we re-
quire that the wave functions for the nucleons be
single-valued functions on the V„wedo not ob-
tain all the irreducible representations of SU(3),
but only all those representations which are ob-
tained by repeated formation of direct products
and reduction starting with the 8-dimensional
representation. Thus the nonexistence of
"quarks", or equivalently, the integrity of the
fundamental electric charge, which appeared so

puzzling from the point of view that the relevant
group be precisely SU(3), can be understood sim-

ply as a single-valuedness requirement on the
wave functions in V~. (The analogy of integral
orbital angular momentum for the single-valued
representations of the rotation group is obvious. )
The wave function for the eightfold representation
is readily seen to be a symmetric second-order
tensor which has zero trace and unit determinant.

Deviations from strict SU(3) symmetry can be
obtained by analytically continuing the metric to
the Minkowski signature, but in view of the fact
that the relationship between the positive-definite
internal space and external Minkowski space is
obscure at this time, there does not seem to be
much motivation for such a procedure.
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The action of higher symmetries in the realm
of strongly interacting particles is, as is well-
known, to build up conserved currents. However,
these symmetries'~' are not exact and therefore
the currents are also only "partially" conserved.
The most suitable method of expressing "partial"
conservation of currents is based on the Gold-
berger- Treiman' relations. In the context of
symmetries of the type'~~ [SU(3)P, we shall ex-
plore the consequences of partial current con-
servation and show that relations among masses
and coupling constants usually derived on the

basis of lowest order perturbation theory can be
easily obtained by the Goldberger- Treiman meth-
od and that this method also leads to new rela-
tions not obtainable by perturbative techniques.

We shall start with the usual SU(3) invariance
and derive the Gell-Mann —Okubo'&' mass formula
with this method. Let us consider the matrix
elements of the conserved vector currents of
unitary spin between eightfold-baryon states

(8'lu IB)=u,E, A(q )y u
8 $2
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+D, [G(q)y +0(q)q j
S 2 2

+ ~ ~ 0 gJ (la)

where the form factors now explicitly depend on
the index S and the dots stand for divergenceless
(-a& q ) terms. ' Spontaneous breakdown of SU(3)
distinguishes itself by the fact that the current
v„ is conserved:S.

&a Is v Ia)=(a-a)(F, A +D, G )
S, S S

+q (F, c +D, ff )=0, (2)
2 S S

B and 8' being the baryon masses. This relation
has to be obeyed for all q' and this leads in the
mell-known fashion to the existence of an octet
of massless scalar mesons ("zerons"). ' In real-

where q is the four-momentum transfer and
a~re well-known coefficients. Formula (1)

as it stands is valid only in the limiting case of
exact SU(3) symmetry (i.e., degenerate baryon
masses). Suppose now that a breakdown of SU(3)
occurs and the baryon masses are split. For-
mula (1) is no more valid as it stands, for new
"induced" terms will appear on its right-hand
side. Assuming that the breakdown of SU(3) is
"spontaneous, "' the symmetry will be preserved
in the global system of mutually orthogonal Hil-
bert spaces, built on the continuous manifold of
mutually orthogonal vacua. In the case of a
spontaneous breakdown of SU(3) symmetry the
baryon field operators have exact octet transfor-
mation properties under SU(3), but the vacuum
state now transforms according to a continuum-
dimensional representation of SU(3). Therefore
an SU(3) transformation that leads from U&s to
v&S' will at the same time change the vacuum
0 to an orthogonal vacuum ~'. We will therefore
have a relation among the matrix elements of
v& between eightfold baryon states in a world
built on the vacuum 0 and those of v&S between
the eightfold baryon states of an orthogonal world
built on O'. There will, however, be no relation
among the matrix elements of v&S and v S be-
tween the baryon states of the same world. All
this results in the presence of induced terms in
the matrix elements of v&S between the baryon
states of the physical world which now has the
form

[A (q )& +c (q )q ]
S S 2 2

ity, however, the zerons are not massless, but
this is a problem that we do not wish to discuss
here. If we keep S in (2) fixed but vary 8 and B'
then except for the so-far arbitrary mass differ-
ences (B-B') in the first term, (2) has definite
transformation properties. Therefore, in order
that the relations (2) be mutually compatible,
certain relations must be satisfied among the
baryon masses and among the form factors. Ig-
noring electromagnetic mass splittings, these
relations turn out to be"

3A+Z =2N+2",

G =G =G =G—=0,
r] K K

C =H =C =H =0.
1T fl n

(3a)

(3b)

(3c)

+q c(D +x'F )
2 P P

BB' BB' (4)

(f ' being the pseudoscalar meson decay ampli-
tude) and the requirement that a& be conserved

(3a) is just the Gell-Mann —Okubo mass formula,
(3b) shows that the Dirac form factor of baryons
must be of the F type. -(3c) offers a realization
of an incomplete octet" ~ of zerons. A last re-
quirement derived from (2) is that the F/D ratio
in the a-baryon coupling be the same as the F/D
ratio in the baryon mass formula (F/D)a =-3.2.
This derivation of the mass formula can be read-
ily extended to boson octets where automatically
masses squared appear instead of masses. It
can also be extended to higher multiplets (10,
27, etc.).

With this result in mind we can now consider
the case of an SU(3)SSU(3) scheme where eight
axial vector currents share with the eight vector
currents the fate of partial conservation. Such
would be the case if the baryons were massless.
By requiring the baryons to be massive but de-
generate we automatically break the SU(3)8 SU(3)
symmetry but maintain the usual SU(3) symmetry
and therefore the exact (without induced scalar
terms) conservation of vector currents. If we
view this breakdown of SU(3)S SU(3) as spontane-
ous, then an octet P of massless pseudoscalar
mesons (pzerons) will exist so that axial-vector-
current conservation should be retained. At this
intermediate stage we can write the matrix ele-
ments of the divergence of the axial-vector cur-
rent between single baryon states in the form

(B' Ifs a IB)=(D,+xF, ) A
P P 29

222



VOLUME I), NUMBER 6 P H YSI CAL RIVI K%" LETTERS 10 AUGUST 1/64

yields the usual Goldberger- Treiman relations and find

X X

q C =23A.

(5a)

(5b)
g = C [A+ C(B 8-)], (7)

Again the left-hand side of (5b) can be interpreted
as the pzeron-baryon coupling constant (it mul-
tiplies a D+xJ" type coupling) which is strong
[but the coupling is SU(3) invariant]. Equation (4)
exhibits the spontaneous breakdown of SU(3)
@SU(3). The final stage in which even the so-
far untouched SU(3) invariance breaks down (the
baryon masses split) affects axial-vector-current
conservation like a small perturbation and in re-
lations (5) C will now acquire a dependence on
8 and 8' and we shall have

P P 2 2
g88 ~=~88 "88 '[' '88" )]q =0

P P=(D, +xS', }A(8+8 ). (5c)

c « i' g2=C [A+C (8 8)+D (8 -8)+Eq ],-(6)

where the Cg*g are the well-known Clebsch-
Gordan coefficients. y

' We then identify

P 2IC Eq I ~ =g

It can be seen that the departures from the exact
SU(3) coupling scheme are small [-(8+8)/
(8+8')av 1- 15$] a-nd are completely determined
by the baryon mass spectrum. It is also easily
verified that the coupling constants given by (5c)
satisfy the relations given by perturbation theo-
ry, "but (5c) contains only two free parameters
x and A as opposed to the seven parameters left
free by perturbation theory.

This is to be compared with the anomalous cou-
pling (3c) of zerons that does not obey the per-
turbation-theoretic relations. The difference
between the two cases is easily understood once
one realizes that in the limit of exact SU(3) sym-
metry (degenerate baryon masses) the zerons do
not couple to baryons whereas even in this limit
the pzerons are strongly coupled to baryons due
to the spontaneous breakdown of SU(3)8 SU(3)
symmetry related to the mass of the fermions.

A much more dramatic deviation from SU(3)
invariance is found by this method for the B«BP
couplings (8» being the 8 = &a baryon decuplet).
We can write

(Blfs a IB»)

C = C'+D'(8»+8) = C'+D'(8*+8)
av

(8)

C =C =C =C-=C,
m K K (9a)

3A +A =A +A
q m E (9b)

The fact that &&a&~ and 8&a~ have matrix ele-
ments between the same 8 and B*states can be
used to show that

Table I. Calculated and experimental B«B 7t coupling
constants.

theor exp exact SU(3)
B«BI' B«BI' 8 «BI'

N*Nn
Y«An'

y«Z7t

M tel 7

1b

0.ssb
0.58
0.66

1.0
1.0 + 0.2
0.3 + 0.3
0. 71 + 0.15

1.0
1.0
1.0
1.0

The normajized constants X&»B& are defined in
terms of the coupling constants in Formula (10).

Input.

Because of the second term on the right-hand
side of (7), which varies by a whole order of
magnitude as B and B* change, an appreciable
departure of g@~«P from the unitary-symmetric
situation is expected. That this appears indeed
to be the case has been pointed out recently on
the basis of an N/D calculation by Wali and
Warnock. ' Our relations (5c) and (7) also
clarify the reason why with completely SU(3)-
symmetric BBP couplings, highly asymmetric
BB*Pcouplings have been found in reference 14.
Again (7) satisfies the perturbation-theoretic
sum rules. '

The predictions of (7) are compared with ex-
periment'6 in Table I. Already for the four mea-
surable coupling constants our two-parameter
formula (7) makes two predictions (as compared
to a single sum rule obtained in the context of
perturbation theory"). A comparison of (7) with
the dynamical results of reference 14 shows that
we obtain a good agreement for gag«„and
g&&«but not for the E and K coupling constants.
This can be remedied if we let A and C in (7) de-
pend on the index P. The perturbation-theory
sum rules" then require
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(9b) and (Bc) lead to
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Table II. Predictions of 9*BP coupling constants.

A =A +A Y' (Bd}

BBP BBX = — =a+bF +c (10)

where ~p is the hypercharge of the meson P.
Inserting (9) in (7) we find

g, /C
p B*-B 8 *BP

XB ~BP given
by Formula

(10) with
a=-0. 2
b= 0. 6
G= 1.2

XB~BP XB +BP for
calculated exact SU(3)

in reference 14. symmetry.

The group that leaves this equation invariant is

(12)

where y is a constant spinor, whereas the con-
served spin vectors can be directly read off
Eq. (11) to be

u = (y +ieA )g,
p, p,

v =(y ieA )r -O

(13a)

(13b)

The fermion mass term will break the invariance
under the group (12). However, Goldberger-
Treiman relations can be written for the matrix
elements of ~&u~ and 8&v& which will involve
poles corresponding to particles of spin parity

and -,
' . It is, however, completely unclear at

the present moment whether any "weak" inter-
actions have u& and/or v& as their source. If
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Here gN~N /CN+N" and N~ Nha-ve been intro-
duced simply for normalization purposes. A

comparison of (10) with the results of reference
14, exhibited in Table II, leads to a surprisingly
good agreement (discrepancy &15%).

We have thus seen that the Goldberger-Trei-
man relations can be used as an efficient tool
for the study of mass and coupling-constant
sum rules. The general feature of the couplings
of pseudoscalar mesons is that they depart
strongly (weakly) from symmetry if the parities
of the two particles to which the mesons couple
are opposite (identical}. We have restricted
ourselves to the consideration of eight conserved
vector and eight conserved axial-vector currents.
Of course, the number of conserved currents
can be increased up to 32 as me suggested in a
previous paper. '

Finally, a word is in order about conserved
tensors of higher order. We can construct, e.g. ,
a conserved spin vector in the theory of a mass-
less fermion field interacting with a vector field
mith the following field equation:

8 (y +ieA )y = 0.

N Nr
Y+Ax

Y Zg
PV

N*ZK
Y*"K
Y~NK
"*AK
" *ZK
Q,~K

1.00
0. 88
0.58
0.66
0.58
0.66
0. 59
0. 67
0.98
0. 86
0. 57
0.64

1.00
0. 78
0.66
0.64
0. 58
0. 58
0. 63
0.56
0. 87
0.75
0.63
0.64

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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A remark was made that the method of integra-
tion of references 3 and 4 was incorrect. This
remark is not true. %e wish to apologize to the
authors of references 3, 4, and 6 for having
made this incorrect statement. The results of
the paper are unaffected.
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