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LEPTONIC DECAY OF THE @~ PARTICLE*

V. De SantisT
Northwestern University, Evanston, Illinois
(Received 12 June 1964)

Recently a particle of strangeness -3 and of
mass about 1680 MeV has been found! which fits
the prediction?~® for the tenth member (the iso-
singlet) of the spin-parity §+ baryon decuplet.
Because such a particle can decay only via the
weak interactions, it is interesting to study its
leptonic decays, since they may appear with a
rate large enough to be observed in the near
future.

Assuming V-A leptonic interaction, the most
general interaction for the process

Q -E%+1+v, l=y,e, (1)

can be written in the form
= '0"P ; ' oVP
H —[_(GA 0 /ﬁuyscv Q /ﬁ)av]
X[Typ(l -iy v, (2)
where
vp X vp
+(f PP /M 2P fmtf PO /i,
QP =(r " +f, P'b, /Mm)g"”

+ (f3’Pp/M +f6°/m +f g yp)pu/m, (3)

P, M and p, m being the four-momentum and the
mass, respectively, of the 2~ and of the =°
particle; f,, f,, fs, 74, and f; are form factors
(f, which is equal to unity has been put in for

H,“=(/9(0,0,1,0),

convenience only). =, I, and v are the usual
spinors, whereas ,, is a 3 spin operator. We
adopt for it the Rarita-Schwinger representation®
and, following Kusaka” and Brown and Telegdi®
we will use the set of orthonormal positive-
energy spin states defined as
o f-m fotirF ta, (4)

14 14 14
where v and ¢ are vector and polarization in-
dices, respectively, 2% are spin-up and -down
positive-energy i-spinors, and HV§,FV5 are
the following four-vectors:

H, ®=27%1,i,0,0), F ®=0,

Hy(z)EO, FV(2>52‘“2(1, -1,0,0),

HV"’E(I/\/E)(I,-Z}O,O), F ®=(V§(0,0,1,0),
14
FV“)E'(I/‘[—G)(I’Z" 0’ 0)' (5)

In the square matrix element we need, the lep-
tonic term is straightforward. In the baryonic
term, instead, we have the products ngﬁ 3
which are linear combinations of spin-up and
-down Dirac spinors. Thus we need two step
operators such that (lower indices refer to en-
ergy and upper indices refer to spin)

0.9 =91 (6)
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and the projection operators
sQ =07 so =9 . )

With their help we find

b= & & £ Ex o E Ex E Ex o E Ex i
Q gu _El[(H” H# +F H” O_)S++(FV F# +H F# O+)S_]A+(P)Q Q, (8)

where A+(P) is the positive energy projection operator.
The step operators in our representation are found to be

Oy = [ysvo/(£ny +iny) [nyy, - nayy),
n=b/|PI, 9)
and the spin projection operators are

sﬁ:= é(lii')’s'}’o;'ﬁ)' (10)

Using these operators in the coordinate frame where n= (0,0, ﬁ/ Iﬁl), then going to the rest system
of the 2, we obtain

Es £_ 3 4 i
QV Q# _1RV/.L (1 +yo)iz_:19 Q, (11)
with
£ _ &€ o, & N & 13
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From this point on, the usual spin-4 projection and trace technique can be used to calculate |M ilz.
We will treat first the case of a completely unpolarized 2. Averaging on the four polarization sStates
we find

=1 - M z
<Luu>av ’61/;1(1 61/0)’ ¢ uu>av €0y 3’

N __ 1 =1
vu>av a6011/;1’ <Ouy>av 3€Ou2u' (13)

The result is a complicated expression, but a number of terms are smaller than the main ones by a
factor of (E/m)z. To a first approximation, those terms can be dropped out, leading to the final ex-
pression (w is the energy of the =)

(m u/ww) lMﬁ |2= (2n)’K(w)[F1(p, B, k') + (2R/m)F2(p, k,k')]

+(20)°K W)[F (p, k, k") + (2R' /m)F ,(p, k, k"], (14)
where

(27)°K " (w) = 3GV'2(1 - w/m)(fl' +f2’w/m)m/w, (27)°K (w) = 3GA'2(1 +w/m)(f1 +f2w/m)m/w, (15)
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and
sza tfgw/m+fs o, Sy tfw/mfy’ (16)
h +fyw/m’ A +f'w/m

w, K being the energy and momentum of the lep-
ton, w’,k’ that of the neutrino. Two main fea-
tures emerge at this point. First, owing to the
small amount of the phase space available for
the =, the ratio w/m is strictly close to one for
every value of w so that, from (15),

(27)°K (w) = §G A "’(fl +fo)f K'w)=0,  (17)
and the entire result, in this approximation, de-
pends only on G4’* and not on Gy'?. Second, in
the same approximation we have

R=(fy+fo+f)/(fr+f2), (18)

and (14) appears to be a one-parameter formula
and opens the possibility that the experimental
data, when available, will test what is the best
value of R, i.e., of the ratio among the indirect
terms and the direct ones.

The decay rate, given by

[ =47 [dp p*K(w)[1, + 2R1,/m), (19)
where
I= fo4P-p-t- k')Fid’kd’k', (20)
has been calculated for the electron decay
Q ~-E%+e+v (21)

neglecting the electron mass and choosing the
angle 6 between the cascade and the electron as
angular parameter. The total rate is found to be®

FzFA (9,29 - 1.32R)10® sec™, (22)

where F4’ is a dimensionless constant defined
as Fu'=Gy'm pz/fﬁ', and in the static limit, we
put f, +f,~1.

For sake of comparison, we may see what the
order of magnitude would be putting for F A ’ the
value of the 8 decay coupling constant F A»

FA = GAmpz/w/—2_= (1.25/ﬁ)GV1nP2

=(1.25/¥2)1.01x1075, (23)

We find

(Dp -

=(7.4-1.05R) x10° sec™?, (24)
Fp=Fy

and using the value of the lifetime given in refer-

ence 1,

rQ-=Z+e+v)_

rQ-=+m < (25)

5%.
However, this being a strangeness-changing de-
cay, this rate should be further reduced by an
order of magnitude.

In addition, several distributions and rates
have been obtained. Among those, the ratio of
the total forward to the total backward rate has
been computed after integrating separately for
0° <6 <90° and for 90° <9 <180° and in Fig. 1 a
plot of this ratio as a function of R is shown.
This is the most promising distribution to be
compared with the experiment and even with
relatively few events available, it could help in
drawing some conclusions about whether or not
the indirect terms are important in the matrix
element. More detailed information on this sub-
ject can probably be gotten from the angular cor-
relations in the case of a polarized decay, and
a calculation of this is in progress, but those
correlations are more difficult to detect experi-
mentally and will require more events to be use-
ful.

The author wishes to express his gratitude to
Professor L. M. Brown for suggesting this work,
for advice, and for reading the manuscript.
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FIG. 1. Forward/backward ratio, rf/ rb’ as a func-
tion of R.
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%0ur approximation is meaningless for R >5. As R
increases, the corrections are no longer negligible.

FOUR-DIMENSIONAL BARYON SPACE AND QUARKS
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(Received 3 June 1964)

The purpose of this note is to indicate a pos-
sible four-dimensional interpretation of the em-
pirically determined symmetries which seem to
be emerging from the study of the physics of
elementary particles. Previous authors!s? who
have sought to understand the phenomena of ele-
mentary particles from a space-time viewpoint
have assumed a preferred symmetry structure
for the “internal” space-time, e.g., the homo-
geneous Lorentz group, and thereby attempted
to deduce the properties to be expected for the
baryons. However, the semiempirical, semi-
formal approach, which to date has proven far
more successful, seems to lean more toward a
group of rank 2, and very possibly of dimension
8 [that is, SU(3)]. Rather than abandon all hope
of a four-dimensional interpretation we preferred
to examine the possibilities which remain avail-
able assuming that a group such as SU(3) proved
to be correct. A study of some known theorems
on groups of motions of Riemannian manifolds
has led to a remarkably unique result which we
wish to report here.

It is well known that the maximum group of
motions which a Riemannian v, can admit is a
10-parameter group, and that this can occur only
for a space of constant curvature,® that is for a
space of rather trivial geometric structure. A
somewhat less known theorem, due to Fubini,*
states that if a V, admits a 9-parameter group it
necessarily admits a 10-parameter group and is
therefore of constant curvature. The maximal
symmetry that a V, can have without having a
trivial geometric structure is therefore an 8-
parameter group of motions. Egoroff® has shown
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that if a v, admits a G4 it must necessarily be an
Einstein space, that is, a solution of the Einstein
vacuum field equations (with cosmological con-
stant)!

More recently, Vranceanu® and Egoroff” have
determined the necessary structure of those Gg’s
which can be permitted as motion groups of a
V,, and have explicitly determined all (positive-
definite) V,’s which can admit an 8-dimensional
maximal group of motions. That a vV, with Min-
kowskian signature cannot admit a maximal G,
may be seen as follows: Since a G, necessarily
acts transitively on a vV, the stability subgroup
(i.e., the subgroup which leaves some one point
of v, fixed) must have 4 dimensions. Further-
more, if we choose Riemann normal coordinates
in the neighborhood of the fixed point, it is evi-
dent that due to the Minkowskian signature the
stability subgroup must also be a subgroup of
the homogeneous Lorentz group. However, it
can be shown that the homogeneous Lorentz
group, unlike the orthogonal group in 4 dimen-
sions, does not have a 4-dimensional subgroup
which can be embedded into a maximal transitive
Gg. Thus, the maximal group that a Riemann
space of nonconstant curvature and Minkowski
signature can admit is a G,. (That a G, can, in
fact, be attained may easily be seen by the met-
ric ds?=dt*-d]? where dl? is the metric of a
positive-definite v, of constant curvature.)

An inspection of the solutions of Vranceanu and
Egoroff reveals that there are only two G,’s which
can be represented as motions of aV,, only one
of the Gg’s being compact. The noncompact G
is obtainable from the compact group by analytic




