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model with the &~+ states in 18 is that the decay
Y,~(1660)-1',~(1385)+w is expected to be en-
hanced relative to the other Y,~ decays. This
coupling is nonvanishing in the W~ limit, in
which the other isobar decay couplings vanish.
There is some evidence for such a strong
Y,~(1660)-1',~(1385) +w decay mode 2
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ingly that more than one phase shift is large and rapidly
changing in the second resonance region. We know of
no analysis of photoproduction in this region which takes
more than one final state in addition to the first reso-
nance into account, and therefore we doubt that the
parity ambiguity is yet resolved.
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[Phys. Rev. Letters 12, 570 (1964)] give an argument
to the effect that an SU(3) stage of approximation is
impossible. Their argument is entirely incorrect.
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~7A fact clearly pointed out in reference 16. There
are two reasons for not changing the assignments
in Schwinger's scheme in order to make 18 (rather
than 18~) coupled to the baryon-pseudoscalar channel,
as was done by Gerstein and Mahanthappa. In the
first place the pion nucleon coupling would then vanish
in the symmetry limit. In the second place, as pointed
out by several authors (references 12 and. 13) the single
baryon-exchange mechanism would be repulsive in the
representation 18.

~SThe argument that single baryon exchange must
2+drive some~& resonances is unimpressive; there are

too many simplifying assumptions in the calculation
and too many other forces at work.
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Some time ago, it was observed' that in the
elastic scattering of an unstable particle ("iso-
bar") on one of its decay products ("meson" ),
the exchange diagram, Fig. 1(a), can be an
energy-conserving process in the physical re-
gion [see Fig. 1(b)]. As a cons~uence, the
diagram of Fig. 1(a) has a singularity near the

physical region, in fact, in the physical region
in the limit of vanishing isobar width (we shall
call such singularities P singularities). This
singularity contributes a peak to the isobar-
meson scattering cross section. 2 But since all
physically observed interactions are initiated
with stable particles (weak interactions ignored),
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physical region because it is on the other side
of a cut due to the isobar-meson intermediate
state of Fig. 1(d). This was first pointed out, in
this connection, in an earlier work' and subse-
quently verified by several authors. ' '

The most direct demonstration is to recognize
that Fig. 1(d) is a triangle diagram, with well-
known singularities. s The location of the triangle

singularity (Landau curve) is given by

FIG. 1. (a) An elastic isobar-meson scattering
diagram which yields P singularities. The mass of
the exchanged particle is a. (b) A portion of the
Mandelstam plane (s, g, g are the usual center-of-mass
energy squares) showing the physical region (dotted)
for elastic isobar-meson scattering, and the location
of the pole of the diagram of Fig, 1(a), at g=a . In
each partial-wave amplitude, this pole implies loga-
rithmic branch points where it enters and leaves the
physical region at s =s and s+, these branch points
can be connected by a cut. (c) A production process
diagram in which the isobar-meson scattering diagram
of Fig. 1(a) occurs peripherally. (d) A production
process diagram in which the isobar-meson scatter-
ing diagram of Fig. 1(a) occurs as a final-state re-
scattering. The letters denote the masses of the lines.

A = b+ c+ [b-(a+ c)]N, (2)

where

1 -b -X/2
C

-1/2 2
N = - —(c ~ a()te —(c ~ ( -a) }.2(b+ c) a a

o('+ P'+ y' - 2a P + 2Py+ 2ya + = 0,c(py
abc

where o( = a[A'-(b + c)~], P = b[8' (c + a-)'], and
y=c[C -(a-b) ].

We are interested in the "elastic" case, C =c
and B = b. We are also particularly interested in
the transition between stability and instability of
the isobar; when b = a+ c, E(I. (1) yields for the
location of the triangle singularities in the A
plane

isobar-meson scattering is not observed directly.
The purpose of this note is to point out that for
at least two simple ways that the isobar-meson
scattering enters as a subprocess in a physical
process [see Figs. 1(c) and 1(d)], these peaks
are absent. 3

We shall also briefly discuss the possibility
that a P singularity may induce nearby singulari-
ties, and hence be indirectly responsible for
peaks: We come to the conclusion that such in-
duced peaks will not lie very close to the energy
of the I' singularity.

Two simple diagrams in which the diagram of
Fig. 1(a) enters as a subdiagram are shown in
Figs. 1(c) and 1(d). In the peripheral diagram,
Fig. 1(c), it is obvious that the singularity of the
process of Fig. 1(a) is not in the physical region,
since the four-momentum of the exchanged line
a is spacelike in the physical region of the pro-
duction process.

In the rescattering process, Fig. 1(d), a more
elaborate analysis is needed to show that the I'
singularity is not near the physical region. Note
how this result differs from the case of a reso-
nance pole of a rescattering amplitude, which
does reoccur as a pole of a production amplitude.
The I' singularity, it turns out, is not near the

Note that if a is stable (which is assumed), N~
a.re positive; in the static limit, a, b -~, we
have N~ -1 and the logarithmic singularities A~
degenerate into a pole.

In the stable case, b&a+c, we have A~&b+c,
i.e., the singularities lie below the normal bt".

threshold; it is known that they lie in the second
sheet, reached through the be cut. %e can con-
tinue to the unstable case, passing the critical
point b =a+c by using the Feynman rule: The
internal mass a should have a small negative
imaginary part. Thus the singularities A~ have
a small positive imaginary part as they pass the
normal threshold, and so are not close to the
physical region; see Fig. 2(a).

For completeness we discuss briefly the treat-
ment of b as an unstable particle; this treated at
length in, for instance, reference 7. An unstable
particle is, of course, not a physical state, and
in diagrams such as Figs. 1(d) and 2(b), taking
them either as Feynman diagrams or "unitarity"
diagrams, the line b stands for a sum over phys-
ical states, such as the two-body state consisting
of particles C and a. In the analogous diagram,
Fig. 2(b), it is well known how a resonant pole
in the C-a scattering amplitude occurs as a near-
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FIG. 2. (a) The location of the singularities of the
diagram of Fig. 1(d) for the elastic" (C =c and g =g)
and unstable (5 & g+ c) case. The branch point at g + c
is the normal threshold, the branch points Ay are the
triangle singularities. The solid arrow shows how A~
are to be reached from the physical region. The
dotted arrow shows the motion of A~ as one contin-
ues from the stable case 5 &a+c. (b) A diagram in
which 5 occurs as an intermediate state. (c) An iso-
bar-meson scattering diagram of the type of Fig. 1(a)
in the static model. (d) The poles in the cu plane (cu

=meson energy) of the meson-N (upper diagram) and
meson-N* (lower diagram) scattering amplitudes in
the static model. Those which lie at energies cu &m

(m =meson mass) are really displaced off the real
axis. The &'s denote poles due to the exchange of the
labelled isobars in the crossed channel; the *'s denote
the pole due to the labelled isobar in the direct channel.

by pole in the amplitude of Fig. 2(b), and so in
this sense the resonance b is here equivalent to
a particle. In just the same way, the resonance
b is equivalent to a particle in diagrams such
as Fig. 1(d).

We would now like to discuss the possible
effect of the I' singularity as a "driving force"
in dynamical models, that is, the possibility
that it may be responsible for an isobar-meson
("three-body") resonance. Hwa, ' followed by

Gyuk and Tuan, ' have argued that under suitable
circumstances a three-body pole can occur close
to the energy of a P singularity, but they have
made no actual calculations. Peierls" has argued
similarly that a I' singularity in an isobar-meson
scattering amplitude should generate a three-body
resonance pole at a somewhat higher energy,
the resonance being closer to the I' singularity
the stronger the coupling. We shall see below
that there is some truth to this, although it
seems that if the coupling is made strong, so
as to make the three-body resonance pole ap-
proach the I' singularity, the isobar becomes
more tightly bound, so that the I' singularity it-
self receeds to lower energy. Calculations in-
volving the process of Fig. 1(a) have been done

by Harr jngton, Mandelstam, Paton, Peier ls,
and Sarker, "and Srivastava, all with the result
that no nearby pole was generated.

A very special model, which should be men-
tioned, is that of Peierls and Tarski. ' This
consists of a static scatterer on which two me-
sons scatter independently. ' Thus if meson
1 (2) has a scattering resonance (or bound state)
with excitation energy 6, &2&

(i.e., energy above
the ground state of the scatterer), then there is
a three-body isobar with excitation energy 4
—+1 + +2 This occurs formally in the following
way.' Any production amplitude into the three-
body state consisting of the scatterer, meson 1,
and meson 2 has a factor'

(3)

where D&(&u&) is the denominator, or Zost, func-
tion of the scattering of meson j; if the scatter-
ing of meson j has a resonance at energy ~&, Dj
has a zero at &u~=&~. The factor, Eq. (3), ex-
hibits no dependence on the total energy ~ (&u = &u,

+~,), but this dependence appears if we form the
production cross section, which will be propor-
tional to

2 kk1 2' ID, ((u, )D, (u)-(o, ) P '

which has poles at ~ =&,+&, and (~, +&,)*.
These poles will then appear in any amplitude
in which the three-body state occurs as an inter-
mediate state. " This "three-body" pole at e
= 4, + 42 is just at the I' pole of the meson-isobar
scattering of Fig. 2(c). The reason for this iden-
tity of the P pole and resonance pole is the very
special circumstance that in this model the cuts
corresponding to isobar -meson intermediate
states (branch points at u& =4, +m, and 4, +m, )
are lacking. When any departure occurs from
the condition of independence of the interaction
of mesons 1 and 2, the isobar-meson state cuts
will appear, and the pole which is near the phys-
ical region, the resonance pole, will move away
from the I' pole (which, in fact, changes into a
short cut as one leaves the static limit).

To get an idea of how far the three-body pole
may be from the I' pole in more realistic static
models, we consider static models in which the
basic meson-scatterer interactions are of Yukawa
type, i.e. , single meson emission and absorption.
In these models, the scatterer is not static with
respect to its spin or charge coordinates (we
ignore the neutral scalar model), and so the
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scattering of two mesons will not be independent.
One such model is the Lee model with Castillejo-
Dalitz-Dyson pole added; this was investigated by
Srivastava, who found no resonance in the vicin-
ity of the P-pole position.

A large class of models, not solvable exactly,
but more physical than the Lee model, are simply
the ordinary static models. According to the
results of strong-coupling theory, '6 for strong
enough coupling higher isobars (resonances or
bound states) exist, '7 that is, the scatterer N
has the excited states N*, ¹*,etc. , where N
is the ground-state multiplet of the scatterer, K"
("isobar") is the multiplet of excited states which
appears as poles in meson-N scattering, N**
("higher isobar" or "three-body resonance") is
the multiplet which appears (in addition to N*
and N *) as poles in meson-N* scattering, etc.
For simplicity, let us speak of models in which
the isobar multiplets (as well as the ground state)
are each degenerate, writing &„&„etc.for
the excitation energies ¹,K"~, etc. Then, due
to the N-exchange diagram, meson-¹ scatter-
ing has a & pole at a meson energy of &„ i.e. ,
at a total excitation energy of 24,. The "three-
body" resonant state ¹*,appearing as another
pole in meson-¹ scattering, is at co =+2
Isee Fig. 2(d)]. We know that b,,&2A, : In the
strong-coupling limit the isobars form a rota-
tional band, ' the energies satisfying 4„-4~ y
= C„(&„+1-&„), with Cs & 1. In the strong- cou-
pling limit, g- ~, the C~ are independent of g,
and the b,„go as 1/g'; hence although as g- ~
the N** resonance energy &2 approaches the I'-
pole energy 2h, (as suggested in references 5
and 10), it does so only at the same rate that &,
itself approaches 0, i.e. , the ratio b,,/24, goes
to a constant, &1. For instance, in the mNP-wave

static model 4„~(2n+ 1)(2n+ 3)-3, thus b, /2b,
= &4. The situation can be roughly described by
saying that the meson-¹ scattering is rather
similar to the meson-N scattering, hence in the
former the distance that the resonance pole (N*')
lies higher than the crossed pole (the P pole),
i.e. , 4, -24„ is of the same order (~l/g ) as in
the latter, i.e. , 4,. A particularly simple situa-
tion holds in the charged scalar model': Here
the only crossed poles in meson-N and meson-N*
scattering are those due to N exchange, and the
residues are equal (to order 1/g'); hence in the
strong-coupling limit, meson-N and meson-¹
scattering are identical and so +g 2+g = +g i.e. ,
6 /2h
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