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FIG. 3. The functions V(x) and W(x) for copper and
lead.

A graph of the hypergeometric functions® V= V(x)
=F(ia, -ia;1;x) and W=W(x) =F(1 +ia, 1 -ia;2;x)
as a function of x is given for Z =29 and Z =82,
0<x<1, in Fig. 3. The units of energy and
momenta are mc? and mc throughout.
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GRAVITY: A UNIVERSAL REGULATOR?

Bryce S. DeWitt*
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
and The Institute for Advanced Study, Princeton, New Jersey
(Received 1 June 1964)

In view of the suggestive, although nonrigorous,
results which have been obtained in several re-
cent attempts!™* to obtain quantitative informa-
tion from nonrenormalizable field theories, it
is of interest to see how well some of the methods
which have been introduced fare in a completely
different setting, namely that of quantized general
relativity. General relativity describes the arena
in which the rest of physics happens, and it is of
interest to determine at how many different levels
it can make its influence felt. It has, for exam-
ple, been repeatedly speculated® ® that quantum
gravidynamics may remove the divergences in
conventional field theories by providing a natural
cutoff associated with the well known fundamental
length 10~% cm.®

In this note we show that very simple results
can be obtained, which tend to confirm these
speculations in at least one nonpathological case
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—two scalar particles exchanging gravitons in the
ladder approximation. The “leading terms” of
the Bethe-Salpeter amplitudes can be summed
exactly, and, owing to certain remarkable can-
cellations, the sum of the ladder-type contribu-
tions to the gravitational self-energy can be ex-
panded in a power series in the bare mass, with
no approximations whatever. Furthermore,
these results can be extended to the case of
charged scalar particles, with one or more of
the graviton rungs replaced by photons, and a
simple expression can be obtained for the lowest
order electromagnetic self-energy. The self-
energies found in this way are finite, although
not always small.

It is convenient to use “absolute units” in which
n=c=16rG=1, where G is the gravitation con-
stant. If the DeDonder gauge'® is employed for
the graviton propagators, then the total Bethe-
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Salpeter amplitude is given by
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Here g +p,,q-p, are the initial momenta and q +p,, g-p, the final momenta of the scalar particles, and
m, is their bare mass (assumed the same for both). All propagators are understood to contain the
usual infinitesimal negative imaginary term, and the flat space-time metric is taken in the form (-1,
1,1,1).

Expression (3) is 2(z-1)-fold divergent at high momenta and hence high-energy damping of the total
amplitude may immediately be suspected. (We ignore the low-momentum divergence arising from the
long range of the gravitational interaction.) Using the symbol “~” to denote the usual “leading-term”
approximation®~* of neglecting g and m, in comparison to the k’s, and taking note of the cancellation of
the second and third terms inside the brackets of Eq. (2) in the limit ¢ -0,

X1(0, 05, 01) =[So™ (Po)So H(P1) -m* (P, +51)? -3m*](py-py) 72, (5)

we find
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in which complete cancellation has occurred between vertices and scalar propagators.
Adding together the modified amplitudes (6), we now obtain

X(q) pzy b1)~ [(CI +Pg)'(l1-P;)(CI'Pz)-(lI +p1) '(q +P2)'(q +Dl)((I'P2)-(Q'P1)-m02(q +P2)'(q +p|_)
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where the function Y satisfies the integral equation
Y (p)=p~2-i(2n)™* [(p-k)"2Y (k)dk. 8)
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In coordinate space this equation takes the triv-
ial form

Z(x)= G(x)[1-iZ(x)], (9)

where Z is the Fourier transform of ¥ and G(x)
is the Feynman Green’s function for a massless
field:

G(x)=(2m) 2i(x2+:0)7. (10)
The solution of (8) is immediate:
Z(x)=—S)__ i L (11)

1+iG(x) (@m)2x2-(2m)-2+i0

or, in ordinary cgs units,

i 1 ,
20 =Gy ¥ w0 1)

where
A =(47G/mc?)*?2=1.82x10"% cm. (12)

Z(p?) =i(2m)™* [So(k)X (0, &, p)dk

We thus see that in the limit of very high momen-
tum transfer, in which the first term on the right
of (7) becomes negligible compared to the se-
cond, the singularity of the effective gravitational
interaction is displaced off the light cone in co-
ordinate space and onto a hyperboloid lying at a
distance A in spacelike directions. This is
roughly equivalent to endowing the scalar parti-
cles with the properties of hard spheres of dia-
meter A.

Corresponding to each ladder diagram there is
a self-energy diagram which is obtained by clos-
ing off the top of the ladder and setting ¢=0. In
view of the fact that the singularity of the scalar
propagator which effects the closure does not
coincide with that of the effective gravitational
interaction Z(x), one may anticipate that the sum
of all such self-energy diagrams is finite. This
sum is given by

=i (21)"* [[¥ (k-5)Sg 2 (D)=m o 2S (k) (B +p)*(k=p)? +im 2(2m)~* [ ¥ (k-E’)S (k") (k" +p)2(k'-p)~*dk’

+im o 2So() (21)™* [(k +7)2(k-k")?Y (k'-p)dR’'Sy~ 1 (p) +m 2(2n)™° [dk’ [dk’" Y (k-k")S (k")

X (k’ +k'" )2(k"-k"" )2Y (B'"=-p)Sg2(p) ++--dk. (13)

The terms in m? are included to make up for the
fact that the first term is obtained by neglecting
the second and third terms inside the brackets
of Eq. (5) when the X,’s are inserted into (3) to
obtain X. Additional corrections, of order m*,
m,’, etc., can also be obtained in a straightfor-
ward manner if desired.

Care must be exercised in the evaluation of
the above integrals, some of which are divergent
standing alone. In particular, the k integration

must be reserved to the last. Otherwise we
should be tempted to use
(2n)“fY(k)dk =Z(0)=-i (in absolute units), (14)

leading to a trivial and incorrect cancellation be-
tween the second and third and fourth and fifth
terms inside the brackets of (13). Instead we
use the relation

5(k)-i(2m)~*Y (k) =i(2n)’2DkY(k), (15)

which yields

z(p?) =i(277)"50'1(b)fY(i)-k){l-imozﬂkfso(k)l:]k,[(k +R')(k-k")7%S (k) iR + - }dk. (16)

The operator Og’ transforms the divergent integrals into convergent ones, which makes it then safe
to use (14). The integral above is easily evaluated, and we obtain

Z(p? =SO"(b)[l-imoz(Zn)“zfY(p-k)DkSO(k)dk +oee],

=So'l(P)'mO"’+im02(27l’)‘450-1(p)fY(p_k)so(k)dk e, an
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To present accuracy S,(k) in the final integrand
may be replaced by 1/k2. In view of Eq. (8) this
replacement yields

S(pH=p2+m Sy M (P P2V (p)] +++.  (18)
For spacelike p’s the function Y (p) has the form

B _i—H(z)(z) =(p2)1/2
Y(p)_-Sn l2: » BETor 7

0, (19)

its value for timelike p’s being obtained by con-
tinuation in the lower half p2 plane. Let us now
introduce a wave-function-renormalization factor
¢ multiplying the original scalar Lagrangean. It
is not difficult to see that the radiatively corrected
scalar propagator becomes

S() =" p2+m +Z (A,

If the experimental mass is denoted by m then
mgy and & are determined by

(20)

m2=m+Z(-m?, ¢ '=1+T'(-m?. 1)

Making use of the series expansion of the Hankel
function (19) one finds, in ordinary units,

m2 41_]'2
m°2=2m2[1 +Z‘l:’2(ln;n'—2_+0.154) +“-J, (22)
- m? . 4p®
£ 1=2[1 +4—u—2(ln’;n—.;-0.846)+-..]’ (23)
where
w=k/xc=mrc/4G)**=1.93x107% g~10'? BeV.
(24)

For ordinary elementary particles the logarith-
mic terms are negligible, and we have m?
= %m 02, £=3.

In view of the restricted class of self-energy
diagrams considered, these precise expressions
are not, of course, to be taken seriously. How-
ever there is no reason to believe that the inclu-
sion of other diagrams will qualitatively change
the picture. In principle, the graviton ladder
diagrams may be summed also for particles of
spin 3 and 1, although the complications of spin
present serious computational obstacles in these
cases. For spin 1 it is interesting to discover
that the gradient terms in the particle propagator,
which are responsible for the “bad” divergences
which characterize vector theories, drop out
when they are juxtaposed to graviton vertices.
In this connection it is also worthy of note that
functions like Y (p), which have the exponentially
damped or oscillatory high-energy behavior char-
acteristic of Bessel functions, are very power-

ful regulators.

The ability of gravity to act as a regulator is
not limited to gravitational self-energies alone.
For example, a class of gravitational corrections
to the lowest order electromagnetic self-energy
of a charged particle is obtained by replacing a
graviton line by a photon line in all possible ways
in all of the ladder graphs. In the case of scalar
particles it turns out that this gives a contribu-
tion to the self-energy function Z(p2) which is of
exactly the same form as the terms in mgy? in (13),
but with m,? replaced by -4r@. The correspond-
ing electromagnetic contribution to the self-mass
is

dm?=2nau?+logarithmic and other terms. (25)

The fact that this is by no means small is, of
course, directly related to the well-known quad-
ratic divergence of the self-energy in the absence
of gravity. The question as to whether gravity
can similarly serve as a regulator for vacuum
polarization and vertex corrections, which lead
to observable effects, is under current investi-
gation.

We note finally that a self-energy function of
the form (18) satisfies several important field-
theoretical consistency criteria. First of all,
it shows no tendency to lead to ghost states and
negative probabilities; the solutions of Eqs. (21)
are unique for most parameter values even when
electromagnetic interactions are included and the
bare mass is imaginary (negative m,?). In this
respect the use of gravity as a regulator appears
to differ from the use of any other physical field.
Secondly, the form of the modified propagator
Eq. (20) undergoes a smooth transition from
(p*>+m?)~! near the mass shell to approximately
So(p) far from the mass shell, showing that the
singularity of the modified propagator in coordi-
nate space is of the same strength as that of the
bare propagator, in conformity with Lehmann’s
theorem.* Actually, this last property is a
pure bonus, since one of the assumptions of the
theorem, namely, the existence of an energy-
momentum four-vector which generates infinites-
imal displacements of local quantities, fails to
hold in gravidynamics by reason of the general
coordinate invariance of the theory and the re-
sulting complete arbitrariness of the background
coordinates.
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SELF-CONSISTENCY OF HIGHER SYMMETRY UNIVERSES*
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According to the strongest version of the boot-
strap conjecture of Chew and Frautschi,? it
should be possible to rule out all strong inter-
action symmetries other than the observed one,
SU(2)®QY (Y is hypercharge, baryon number plus
strangeness) by requiring all particles to gener-
ate themselves self-consistently. Present knowl-
edge of dynamics, however, still permits the
construction of a wide range of higher symmetry
universes which are self-consistent in first ap-
proximation.? About SU(2) dynamics it is known
that pion-pion scattering and pion-nucleon scat-
tering with production of p and (¢,2) N* reso-
nances, respectively, can be made self-consis-
tent in first approximation.®* Now suppose one
replaces m, p, N, and N* by multiplets 11, V, B,
and B*, stillJF=0", 17, 1*, and $*, respec-
tively, but now (except for B*) transforming as
the adjoint representation of a compact simple
group G.% Simultaneously, in the scattering cal-
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culation, one replaces SU(2) crossing matrices

by G crossing matrices. Then the IIIl problem

is still self-consistent, and, at least for G=SU(n),
the IIB problem is also. Let C4(X,Y) [or C,(X,Y)
denote the crossing matrix element giving the
force exerted by crossed ¢ (or «) channel Y on s
channel X. Then for IIII scattering in which Vv
bootstraps itself, the relevant elements are

C(V, V) and C,(V, V), which Cutkosky has shown
are always attractive®:

C(v,v)=C(p,p)=%. (1)

(If C,(X,Y)=C,(X,Y), we drop the subscript. ]
Further,57

c(,v)=0, ct(s, V)=+1=—Cu(S, V), (2)

where V'’ is any other channel capable of support-
ing a vector-meson resonance and S is the scalar
representation, i.e., the vacuum Regge trajec-
tory. Hence the presence of crossed resonance



