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We combine percolation theory and Monte Carlo simulation to study in two dimensions the connectivity
of an equilibrium lattice model of interacting Janus disks which self-assemble into an orientationally
ordered stripe phase at low temperature. As the patch size is increased or the temperature is lowered,
clusters of patch-connected disks grow, and a percolating cluster emerges at a threshold. In the stripe phase,
the critical clusters extend longer in the direction parallel to the stripes than in the perpendicular direction,
and percolation is thus anisotropic. It is found that the critical behavior of percolation in the Janus system is
consistent with that of standard isotropic percolation, when an appropriate spatial rescaling is made. The
rescaling procedure can be applied to understand other anisotropic systems, such as the percolation of
aligned rigid rods and of the q-state Potts model with anisotropic interactions.
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The novelty of Janus particles [1], which have two
surface areas of different properties, was appreciated very
early in the field of soft matter [2]. Nowadays the particles
can be synthesized by various methods and are used as
surfactants, micromotors, displays, catalysts, biosensors,
etc. [3–6]. The possibilities offered by Janus particles
mainly depend on the fact that heterogeneous surfaces lead
to anisotropic interactions. Harnessing the unique inter-
actions, unconventional self-assembled structures can be
made, such as gases of micelles [7,8], entropy stabilized
open crystals [9,10], and crystals of orientational order
[7,11–25]. However, in orientationally ordered Janus sys-
tems, long-range connectivity behavior, which is important
to understand transport [26], mechanical [27], dynamical
[28,29], and other properties [30,31], remains largely unex-
plored [11,19,32].
Recently it was found that, in the orientationally ordered

nematic phase of slender nanoparticles, the coupling
between the particle density and the orientational order
gives rise to interesting nonmonotonic behavior of the
percolation threshold as a function of the density [33,34].
Percolation deals with long-range connectivity and is one of
the most applied models in statistical physics [30,31,35,36].
At the percolation threshold, a system-spanning connected
cluster first appears, and there exist various universal

properties, e.g., critical exponents, dimensionless
quantities, correlation and scaling functions [37]. For
percolation in anisotropic systems, while some results have
been obtained on thresholds and critical exponents
[29,33,34,38–45], other universal critical properties, such
as the continuous change of dimensionless wrapping
probabilities of aligned rigid rods [43–45], are not well
understood.
For most systems of Janus particles, positional and

rotational motions are coupled, which leads to complex
phase behavior. However, for close-packed crystals of
Janus particles, positional vibrations are much less impor-
tant. Thus close-packed Janus systems provide a platform
where one can tune controlling parameters, e.g., the
temperature or pressure, to explore orientaional order
driven by rotational fluctuations [18–24,46,47]. In this
Letter, by exploring anisotropic interacting close-packed
Janus disks in two dimensions (2D), we ask how thermal
rotational fluctuations affect universal critical behavior of
anisotropic percolation in crystal phases of orientational
orders, and how the results can be generalized to under-
stand percolation in other anisotropic systems.
We use a simple model of Janus disks on the triangular

lattice, where particles interact with the Kern-Frenkel poten-
tial [48]. Combining percolation theory and Monte Carlo
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(MC) simulation, we find that, in the orientationally ordered
stripe phase [23], though critical exponents are consistent
with standard isotropic percolation, universal values of
dimensionless quantities (e.g., Binder-like ratios and wrap-
ping probabilities [49]) change continuously along the
percolation line. Using theoretical results for wrapping
probabilities of standard percolation in 2D [50–53], we find
an effective aspect ratio ρe to perform a spatial rescaling and
relate quantitatively universal critical behavior of percolation
in the stripe phase to that of standard percolation. Thus the
mechanism underlying the continuous variations of dimen-
sionless quantities is that anisotropic interactions in the stripe
phase cause connectivity correlations to be anisotropic, but
the behavior can be captured by standard percolation. We
then show that the mechanism can also explain anisotropic
percolation behavior in other systems, such as systems of
particles with anisotropic shapes (e.g., aligned rigid rods
[43–45]), and systems of anisotropic bond-placing rules. For
the latter systems, by studying anisotropic bond percolation
[38,39] on the triangular lattice, we demonstrate by the
isoradial-graph method [41,42] that a more general relation
between anisotropic percolation and standard percolation
requires an effective shear transformation involving both ρe
and an effective boundary twist te. In terms of conformal
invariance and universality, statistical models on isoradial
graphs have nice properties [54], which we further use to
derive ρe and te for understanding universal critical behavior
of percolation in the anisotropic q-state Potts models [53].
The results may help design materials with tunable aniso-
tropic connectivity-related properties such as ferroelectricity
[29], conductivity [55,56], and photovoltaics [57].
The model system consists of close-packed Janus disks

with monodisperse patch sizes in 2D. Rhombus-shaped
L × L triangular lattices with periodic boundary conditions
are used, and each lattice site is occupied by a disk with
diameter 1. To allow only rotational motions, the center of
each disk is fixed at a lattice site. As shown at the top left of
Fig. 1, the dark sector represents a patch on the disk which
spans an angle of 2θ. The half-patch angle θ (i.e., the Janus
balance [58]) characterizes the patch size. The Janus disks
interact with a Kern-Frenkel potential [48]: two nearest-
neighbor disks contribute an energy −ϵ if the two patches
on them cover the same edge and touch each other;
otherwise, they contribute a zero energy. When studying
percolation, two disks are regarded as connected when they
interact with an energy −ϵ. The unit of temperature T is
ϵ=kB, where kB is the Boltzmann constant.
Figure 1 shows the phase diagram in the T − θ plane.

Previously it was found that, for 1=3 < θ=π ≤ 1=2, there is
a continuous thermodynamic phase transition from a
high-T disordered phase to a low-T orientationally ordered
stripe phase [23]. For close-packed Janus particles in 2D
continuum space, preliminary results showed that this
thermodynamic phase transition is still continuous [17].
Since at T ¼ ∞ the percolation threshold is θp=π ¼
0.627 765 41ð3Þ [32], to explore connectivity at finite T,

we need first understand thermodynamic behavior for
θ=π > 1=2. We performed extensive simulation using the
Metropolis algorithm, where in a MC sweep the disks are
sequentially visited and independently proposed to rotate
by a random angle in the range ½−π; πÞ. An orientational
order parameter based on the structure factor and the
associated Binder ratio defined in Ref. [23] were sampled
[53]. We find that the continuous phase transition from the
disordered phase to the stripe phase also exists for
θ=π > 1=2, and determine the phase transition line [53]
as plotted in Fig. 1.
To explore connectivity of the Janus disks, we combine

the critical polynomial method [59–64] with MC simu-
lation. In the probabilistic geometric interpretation [62], for
standard percolation in 2D, the critical polynomial is
defined as PB ≡ R2 − R0, where R2 is the probability that
there exists a cross-wrapping cluster and R0 is the prob-
ability of no wrapping. The root of PB ¼ 0 gives the
percolation threshold when L → ∞. The critical polyno-
mial has been demonstrated to be very powerful in
determining percolation thresholds in 2D [32,64,65].
Wrapping probabilities were sampled in our simulation.
Near the whole percolation line, curves of PBðθ; LÞ cross,
and the crossing points converge quickly to PB ¼ 0. The
fact that PBðθp; L → ∞Þ ¼ 0 suggests that the percolation
transition belongs to the universality class of standard
percolation, since this limit is not true for other models such

FIG. 1. Phase diagram of close-packed Janus disks in 2D. The
system is ordered below the phase-transition line with squares,
and it is percolated to the right side of the percolation-transition
line with triangles. According to whether the system is ordered or
percolated, the diagram is divided into four regions: an ordered
and (not) percolated region, and a disordered and (not) percolated
region. Inset: enlargement near θ=π ¼ 0.503, as well as a snap-
shot of an ordered and percolated configuration, with the largest
cluster being dark blue. Vertical dashed lines indicate the position
of θ=π ¼ 1=2 and the infinite-temperature percolation threshold
θp=π ≃ 0.628 [32]. Lines going through data points are added to
guide the eye, and the error bars are smaller than or comparable
with the symbols.

PHYSICAL REVIEW LETTERS 129, 278002 (2022)

278002-2



as the q-state Potts model [66]. We perform finite-size
scaling analysis and find that critical exponents indeed take
values for standard percolation [53]. The estimated perco-
lation thresholds at different T are shown by blue triangles
in Fig. 1. It is seen that, as T drops, the value of θp decreases
and approaches θ ¼ π=2 in the low-T limit. Thus, the
orientationally ordered stripe phase is not guaranteed to be
percolated.
From the theory of critical phenomena, scale invariance at

the percolation threshold is related to the fact that many
dimensionless quantities are independent of the system size,
if finite-size corrections are neglected. Critical values of
dimensionless quantities are “universal” [37] in the sense
that a quantity holds the same value for different lattices,
short-range interactions, etc. For wrapping probabilities,
along the percolation line we find that, in the disordered
phase, they indeed take the samevalues as those for standard
percolation for systems of the same shape [51,67]. However,
in the stripe phase (T < 0.24), we find that they change
continuously as shown in Figs. 2(a) and 2(b). This implies
that the orientational order affects “universal” critical
properties.
It has been known that “universal” values of critical

dimensionless quantities still depend on factors such as the
system shape and boundary conditions [51,52,67–69],
anisotropy of couplings [70–77], and statistical ensembles
[49]. Thus we are interested in whether or how our results
above could be connected with existing results for standard
percolation. From the configurations near θp in the stripe
phase, it is seen that clusters are longer in the parallel
direction than in the perpendicular direction, as exemplified
in Fig. 3(a). After rescaling the parallel direction by an

appropriate factor, the configuration becomes isotropic, as
shown in Fig. 3(b). The rescaling transforms an anisotropic
system with size L × L to an effective isotropic system with
size Lk × L where Lk < L. This leads us to hypothesize
that anisotropic percolation of the L × L rhombus-shaped
Janus system is related to standard percolation on a
parallelogram-shaped triangular lattice of size Lk × L as
depicted in the inset of Fig. 2(c), i.e., the Janus system has
an effective aspect ratio ρe ¼ ρ≡ L⊥=Lk ¼ sinðπ=3ÞL=Lk,
and the rescaling factor is Lk=L ¼ ffiffiffi

3
p

=ð2ρeÞ.
For standard percolation in 2D, values of critical wrap-

ping probabilities depend only on ρ and the boundary twist
t (being ρ=

ffiffiffi
3

p
for the parallelogram-shaped periodic tri-

angular lattice), and their exact expressions are avail-
able [50–53], as illustrated for R2 in Fig. 2(c). Thus one
can compare numerical values of critical wrapping prob-
abilities with the theoretical values to get the ρe value. In
this way, we get the dependence of ρe on T for the Janus
system, as shown in Fig. 2(d). While ρe equals

ffiffiffi
3

p
=2 in the

disordered phase, it monotonically increases as T drops in
the stripe phase, and should approach infinity in the low-
T limit.
With the obtained ρe, we test our above hypothesis as

follows. Beside the direct view from Fig. 3(a) to Fig. 3(b), we
calculate the correlations gðrÞ (probabilities of two particles
at a distance r in the same cluster) in both the parallel and
perpendicular directions at θp. As shown in Fig. 3(c) for
T ¼ 0.23, the correlations of the Janus system can be
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FIG. 2. Critical wrapping probabilities along the percolation
line [i.e., solid curve with triangular points TðθÞ in Fig. 1] of the
Janus system. (a) Probability of wrapping in only one direction
R1 vs T. (b) Wrapping probability R2 vs T. (c) Theoretical
curve of R2 vs the aspect ratio ρ for standard percolation on
parallelogram-shaped periodic lattices. (d) The effective aspect
ratio ρe vs T for the Janus system.
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FIG. 3. Relations between percolation in the stripe phase of the
Janus system and standard site percolation on the triangular lattice.
(a) A snapshot of the Janus system at θp=π ¼ 0.503 027ð2Þ, with
T ¼ 0.23 andL ¼ 256, which is ordered in the parallel (horizontal)
direction. The dark blue region represents the largest wrapping
cluster, with its holes being light yellow. (b) Isotropic configuration
after rescaling the parallel direction by

ffiffiffi
3

p
=ð2ρeÞ, with ρe ≃ 2.85.

(c) Collapse of critical correlations of the Janus system and those
of site percolation on the triangular lattice with size Lk × L ¼
88 × 290. The light gray line has a slope −5=24 from percolation
universality. (d) Collapse of critical ratios Q1 and Qs [78,79] of the
Janus system and those of site percolation with ρ ¼ ρe.
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collapsed into those of standard site percolation by (1) defin-
ing the x axis to be rk=Lk ¼ r=L and r⊥=L⊥ ¼ 2r=

ffiffiffi
3

p
L,

thus g̃kðr=LÞ ¼ gkðrÞ and g̃⊥ð2r=
ffiffiffi
3

p
LÞ ¼ g⊥ðrÞ, and

(2) multiplying g̃ of the Janus system by a nonuniversal
constant (being 0.588 for T ¼ 0.23) [53]. Further, we
compare critical values of two dimensionless ratios at
ρ ¼ ρe. They are defined as [78,79] Q1 ¼ hC2

1i=hC1i2,
Qs ¼ h3S22 − 2S4i=hS2i2, where C1 (Ci for i ≠ 1) is the
size of the largest cluster (other clusters) and Sl ¼

P
i C

l
i is

the lth moment of cluster sizes. It can be seen from Fig. 3(d)
that critical values of the two ratios for the Janus system are
consistent with those of standard site percolation. Thus the
Janus system is quantitatively related to standard percolation
through ρe.
While the anisotropy arises from the emergent orienta-

tional order in the stripe phase, it can also come from
anisotropic constituent particles or anisotropic bond-
placing rules. For the former, we consider aligned rigid
rods of various sizes k (also called k mers as a rod occupies
k consecutive sites) on periodic L × L square lattices. In
simulation, the system is treated as a random sequential
adsorption. By comparing critical values of R2 with the
theoretical curve of R2 for standard percolation on
rectangular-shaped square lattices (t ¼ 0) [50–53], we
extract the dependence of ρe on k, as plotted in Fig. 4(a),
which suggests ρe ≃ 0.4k for large k. The critical values of
Q1 andQs for the aligned rigid rods are also found to match
those for site percolation on square lattices of size
ðρeLÞ × L, as plotted in Fig. S11(b) of the Supplemental
Material [53]. These explain the continuously varying
dimensionless quantities found for aligned rigid rods in
Refs. [43–45].
We then consider bond percolation with anisotropic

bond-placing rules. For the triangular lattice [Fig. 4(b)],
three edges of a triangle are occupied with different
probabilities p0, p1, and p2, and the critical probabilities
satisfy p0 þ p1 þ p2 − p0p1p2 ¼ 1 [38,39]. Recently the
method of isoradial graphs [41,42,54] was developed to
prove the equivalence of critical exponents between aniso-
tropic and isotropic systems, but it has not been applied to
give values of dimensionless quantities. We expect that,
with a shear transformation described by ρe and an effective

boundary twist te, a critical dimensionless quantity takes
the same value on isoradial graphs. After the isoradial
mapping, the length of each edge is adjusted to compensate
for its weight to make the system conformally invariant in
the scaling limit [54], and the angles are determined
by the Kenyon-Grimmett-Manolescu formula [41,42] as
ωi ¼ 3 arctan½ ffiffiffi

3
p ð1 − piÞ=ð1þ piÞ�, i ¼ 0, 1, 2, as illus-

trated in Fig. 4(b) where the rhombus on the left-
hand side transforms to a parallelogram with α ¼ ω2=2.
Thus, for the triangular lattice we derive that the isora-
dial graph has ρe ¼ sinðω2=2Þ sinðω1=2Þ= sinðω0=2Þ and
te ¼ cosðω2=2Þ sinðω1=2Þ= sinðω0=2Þ. For the square
lattice, the isoradial mapping at criticality is sketched in
Fig. 4(c), and we derive te ¼ 0 and ρe ¼ tanðω=2Þ, with
ω ¼ 3 arctan½ ffiffiffi

3
p ð1 − pÞ=ð1þ pÞ�. We have numerically

verified that wrapping probabilities of anisotropic bond
percolation on the triangular and square lattices are equal to
theoretical values of standard percolation with the above
ρe and te [53].
It was shown recently that an effective shear trans-

formation also relates the anisotropic Ising model on a
square to the isotropic Ising model on a parallelogram [75–
77]. In the q-state Potts model [80,81], which can be
represented as correlated bond percolation by the
Kasteleyn-Fortuin transformation, bond percolation and
the Ising model correspond to the special cases with
q → 1 and q ¼ 2, respectively.We also employ the isoradial
mapping to derive an effective shear transformation [53] to
relate the anisotropic Potts model to the isotropic Potts
model for any real value 1 ≤ q ≤ 4. The validity is sup-
ported by the consistent theoretical and numerical results for
wrapping probability R2 in Table S4 of the Supplemental
Material [53]. This considerably extends the results for the
Ising model which were obtained by a method combining
anisotropic ϕ4 theory and exact correlation functions of the
Ising model [75–77].
In short, we have shown that a nontrivial transformation

relates anisotropic to isotropic percolation and Potts sys-
tems. The anisotropy can arise from the emergent phase,
from the shape of constituent particles, or from anisotropic
bond-placing rules. Our study is related to but different from
previous investigations about the dependence of critical
dimensionless quantities on the shape or boundary con-
ditions of the overall system [51,52,67,69]. We anticipate
that the transformation is valid for other boundary con-
ditions, in higher dimensions and continuum space [33], and
for anisotropy induced by other mechanisms [82], as long as
correlations are weakly anisotropic [76]. The method of
numerically determining ρe from a known dimensionless
quantity or exactly deriving shear parameters from isoradial
graphs could be very useful for future research. Our Letter
can have practical applications in other equilibrium and
nonequilibrium phase transitions. For example, for the
nematic transition of rods, variations of the Binder para-
meter were found but not well understood [83,84]. For
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FIG. 4. (a) ρe vs k for percolation of aligned rigid rods. (b) and
(c) Sketch of the isoradial mapping for anisotropic bond
percolation on triangular and square lattices.
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strongly anisotropic systems [85,86] with distinct correla-
tion-length exponents, νk and ν⊥, in the parallel and
perpendicular directions, by carefully adopting a size-
dependent rescaling factor ∝ Lνk=ν⊥−1, the dimensionless
quantities can be used as a powerful tool in locating phase
transitions [87–90].
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II-306, 1423 (1988).
[2] P. G. de Gennes, Rev. Mod. Phys. 64, 645 (1992).
[3] J. Lahann, Small 7, 1149 (2011).
[4] J. Zhang, B. A. Grzybowski, and S. Granick, Langmuir 33,

6964 (2017).
[5] A. Kirillova, C. Marschelke, and A. Synytska, ACS Appl.

Mater. Interfaces 11, 9643 (2019).
[6] X. Zhang, Q. Fu, H. Duan, J. Song, and H. Yang, ACS Nano

15, 6147 (2021).
[7] F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett.

103, 237801 (2009).
[8] Y. Iwashita and Y. Kimura, Soft Matter 9, 10694 (2013).
[9] Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469,

381 (2011).
[10] X. Mao, Q. Chen, and S. Granick, Nat. Mater. 12, 217

(2013).
[11] F. Sciortino, A. Giacometti, and G. Pastore, Phys. Chem.

Chem. Phys. 12, 11869 (2010).
[12] T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F.

Sciortino, J. Chem. Phys. 138, 164505 (2013).
[13] Z. Preisler, T. Vissers, F. Smallenburg, G. Munaò, and F.

Sciortino, J. Phys. Chem. B 117, 9540 (2013).
[14] D. J. Beltran-Villegas, B. A. Schultz, N. H. Nguyen, S. C.

Glotzer, and R. G. Larson, Soft Matter 10, 4593 (2014).
[15] Z. Preisler, T. Vissers, G. Munaò, F. Smallenburg, and F.

Sciortino, Soft Matter 10, 5121 (2014).
[16] Y. Iwashita and Y. Kimura, Soft Matter 13, 4997 (2017).
[17] Y. Liang, B. Ma, and M. Olvera de la Cruz, Phys. Rev. E

103, 062607 (2021).
[18] H. Shin and K. S. Schweizer, Soft Matter 10, 262

(2014).
[19] Y. Iwashita and Y. Kimura, Soft Matter 10, 7170 (2014).
[20] S. Jiang, J. Yan, J. K. Whitmer, S. M. Anthony, E. Luijten,

and S. Granick, Phys. Rev. Lett. 112, 218301 (2014).
[21] H. Rezvantalab, D. J. Beltran-Villegas, and R. G. Larson,

Phys. Rev. Lett. 117, 128001 (2016).
[22] Y. Iwashita and Y. Kimura, Sci. Rep. 6, 27599 (2016).
[23] K. Mitsumoto and H. Yoshino, Soft Matter 14, 3919 (2018).
[24] Z. Huang, G. Zhu, P. Chen, C. Hou, and L. T. Yan, Phys.

Rev. Lett. 122, 198002 (2019).

[25] T. Huang, Y. Han, and Y. Chen, Soft Matter 16, 3015
(2020).

[26] I. Balberg, Phys. Rev. Lett. 119, 080601 (2017).
[27] H. Tsurusawa, M. Leocmach, J. Russo, and H. Tanaka, Sci.

Adv. 5, eaav6090 (2019).
[28] J. H. Cho, R. Cerbino, and I. Bischofberger, Phys. Rev. Lett.

124, 088005 (2020).
[29] L. Falsi, M. Aversa, F. Di Mei, D. Pierangeli, F. Xin, A. J.

Agranat, and E. DelRe, Phys. Rev. Lett. 126, 037601
(2021).

[30] D. Stauffer, Introduction to Percolation Theory, 2nd ed.
(Taylor & Francis, London, 1992).

[31] M. Sahimi, Applications of Percolation Theory (Taylor &
Francis, London, 1994).

[32] Q. Wang, Z. He, J. Wang, and H. Hu, Phys. Rev. E 105,
034118 (2022).

[33] S. P. Finner, T. Schilling, and P. van der Schoot, Phys. Rev.
Lett. 122, 097801 (2019).

[34] S. P. Finner, A. Atashpendar, T. Schilling, and P. van der
Schoot, Phys. Rev. E 100, 062129 (2019).

[35] N. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk, and
R. M. Ziff, Eur. Phys. J. Spec. Top. 223, 2307 (2014).

[36] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[37] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[38] M. F. Sykes and J. W. Essam, Phys. Rev. Lett. 10, 3 (1963).
[39] M. F. Sykes and J. W. Essam, J. Math. Phys. (N.Y.) 5, 1117

(1964).
[40] I. Balberg and N. Binenbaum, Phys. Rev. A 31, 1222(R)

(1985).
[41] R. Kenyon, School and Conference on Probability

Theory, Lecture Notes Series Vol. 17 (ICTP, Trieste,
2004), pp. 268–304.

[42] G. R. Grimmett and I. Manolescu, Probab. Theory Related
Fields 159, 273 (2014).

[43] Y. Y. Tarasevich, N. I. Lebovka, and V. V. Laptev, Phys. Rev.
E 86, 061116 (2012).

[44] P. Longone, P. M. Centres, and A. J. Ramirez-Pastor, Phys.
Rev. E 85, 011108 (2012).

[45] P. Longone, P. M. Centres, and A. J. Ramirez-Pastor, Phys.
Rev. E 100, 052104 (2019).

[46] A. Patrykiejew andW. Rżysko, Physica (Amsterdam) 570A,
125819 (2021).

[47] A. Patrykiejew andW. Rżysko, Soft Matter 16, 6633 (2020).
[48] N. Kern and D. Frenkel, J. Chem. Phys. 118, 9882 (2003).
[49] H. Hu and Y. Deng, Nucl. Phys. B898, 157 (2015).
[50] P. di Francesco, H. Saleur, and J. B. Zuber, J. Stat. Phys. 49,

57 (1987).
[51] H. T. Pinson, J. Stat. Phys. 75, 1167 (1994).
[52] R. M. Ziff, C. D. Lorenz, and P. Kleban, Physica

(Amsterdam) 266A, 17 (1999).
[53] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.129.278002 for: (1)De-
tails for the system of close-packed Janus disks, including
those for the thermodynamic phase transition and those for
the percolation transition. (2) Details for the system of
aligned rigid rods. (3) Details for anisotropic bond perco-
lation, which verify the theoretical results obtained using the
method of isoradial graphs. The shear parameters for the
honeycomb lattice are also given by using the star-triangle
transformation. (4) A script for calculating exact values of
wrapping probabilities for standard percolation in 2D using

PHYSICAL REVIEW LETTERS 129, 278002 (2022)

278002-5

https://doi.org/10.1103/RevModPhys.64.645
https://doi.org/10.1002/smll.201002002
https://doi.org/10.1021/acs.langmuir.7b01123
https://doi.org/10.1021/acs.langmuir.7b01123
https://doi.org/10.1021/acsami.8b17709
https://doi.org/10.1021/acsami.8b17709
https://doi.org/10.1021/acsnano.1c01146
https://doi.org/10.1021/acsnano.1c01146
https://doi.org/10.1103/PhysRevLett.103.237801
https://doi.org/10.1103/PhysRevLett.103.237801
https://doi.org/10.1039/c3sm52146j
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nmat3496
https://doi.org/10.1038/nmat3496
https://doi.org/10.1039/c0cp00504e
https://doi.org/10.1039/c0cp00504e
https://doi.org/10.1063/1.4801438
https://doi.org/10.1021/jp404053t
https://doi.org/10.1039/C3SM53136H
https://doi.org/10.1039/C4SM00505H
https://doi.org/10.1039/C7SM00565B
https://doi.org/10.1103/PhysRevE.103.062607
https://doi.org/10.1103/PhysRevE.103.062607
https://doi.org/10.1039/C3SM52094C
https://doi.org/10.1039/C3SM52094C
https://doi.org/10.1039/C4SM00932K
https://doi.org/10.1103/PhysRevLett.112.218301
https://doi.org/10.1103/PhysRevLett.117.128001
https://doi.org/10.1038/srep27599
https://doi.org/10.1039/C8SM00622A
https://doi.org/10.1103/PhysRevLett.122.198002
https://doi.org/10.1103/PhysRevLett.122.198002
https://doi.org/10.1039/D0SM00023J
https://doi.org/10.1039/D0SM00023J
https://doi.org/10.1103/PhysRevLett.119.080601
https://doi.org/10.1126/sciadv.aav6090
https://doi.org/10.1126/sciadv.aav6090
https://doi.org/10.1103/PhysRevLett.124.088005
https://doi.org/10.1103/PhysRevLett.124.088005
https://doi.org/10.1103/PhysRevLett.126.037601
https://doi.org/10.1103/PhysRevLett.126.037601
https://doi.org/10.1103/PhysRevE.105.034118
https://doi.org/10.1103/PhysRevE.105.034118
https://doi.org/10.1103/PhysRevLett.122.097801
https://doi.org/10.1103/PhysRevLett.122.097801
https://doi.org/10.1103/PhysRevE.100.062129
https://doi.org/10.1140/epjst/e2014-02266-y
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevLett.10.3
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1103/PhysRevA.31.1222
https://doi.org/10.1103/PhysRevA.31.1222
https://doi.org/10.1007/s00440-013-0507-y
https://doi.org/10.1007/s00440-013-0507-y
https://doi.org/10.1103/PhysRevE.86.061116
https://doi.org/10.1103/PhysRevE.86.061116
https://doi.org/10.1103/PhysRevE.85.011108
https://doi.org/10.1103/PhysRevE.85.011108
https://doi.org/10.1103/PhysRevE.100.052104
https://doi.org/10.1103/PhysRevE.100.052104
https://doi.org/10.1016/j.physa.2021.125819
https://doi.org/10.1016/j.physa.2021.125819
https://doi.org/10.1039/D0SM00656D
https://doi.org/10.1063/1.1569473
https://doi.org/10.1016/j.nuclphysb.2015.06.025
https://doi.org/10.1007/BF01009954
https://doi.org/10.1007/BF01009954
https://doi.org/10.1007/BF02186762
https://doi.org/10.1016/S0378-4371(98)00569-X
https://doi.org/10.1016/S0378-4371(98)00569-X
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.278002


expressions from the literature. (5) Preliminary results for
anisotropic q-state Potts model on the triangular lattice.

[54] H. Duminil-Copin, J.-H. Li, and I. Manolescu, Electron. J.
Probab. 23, 1 (2018).

[55] C. Zamora-Ledezma, C. Blanc, N. Puech, M. Maugey, C.
Zakri, E. Anglaret, and P. Poulin, Phys. Rev. E 84, 062701
(2011).

[56] T. Ackermann, R. Neuhaus, and S. Roth, Sci. Rep. 6, 34289
(2016).

[57] K. Thorkelsson, P. Bai, and T. Xu, Nano Today 10, 48
(2015).

[58] S. Jiang and S. Granick, Langmuir 24, 2438 (2008).
[59] C. R. Scullard and R. M. Ziff, Phys. Rev. Lett. 100, 185701

(2008).
[60] C. R. Scullard and R. M. Ziff, J. Stat. Mech. (2010) P03021.
[61] C. R. Scullard, J. Stat. Mech. (2011) P09022.
[62] C. R. Scullard and J. L. Jacobsen, J. Phys. A 45, 494004

(2012).
[63] S. Mertens and R. M. Ziff, Phys. Rev. E 94, 062152 (2016).
[64] C. R. Scullard and J. L. Jacobsen, Phys. Rev. Res. 2,

012050(R) (2020).
[65] W. Xu, J. Wang, H. Hu, and Y. Deng, Phys. Rev. E 103,

022127 (2021).
[66] J. L. Jacobsen and C. R. Scullard, J. Phys. A 46, 075001

(2013).
[67] R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin,

J. Stat. Phys. 67, 553 (1992).
[68] G. Kamieniarz and H.W. J. Blöte, J. Phys. A 26, 201

(1993).
[69] A. Malakis, N. G. Fytas, and G. Gülpinar, Phys. Rev. E 89,

042103 (2014).
[70] X. S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004).
[71] W. Selke and L. N. Shchur, J. Phys. A 38, L739 (2005).

[72] W. Selke and L. N. Shchur, Phys. Rev. E 80, 042104
(2009).

[73] B. Kastening, Phys. Rev. E 87, 044101 (2013).
[74] H. Hobrecht and A. Hucht, SciPost Phys. 7, 26 (2019).
[75] V. Dohm, Phys. Rev. E 100, 050101(R) (2019).
[76] V. Dohm and S. Wessel, Phys. Rev. Lett. 126, 060601

(2021).
[77] V. Dohm, S. Wessel, B. Kalthoff, and W. Selke, J. Phys. A

54, 23LT01 (2021).
[78] Y. Deng and H.W. J. Blöte, arXiv:cond-mat/0508348.
[79] H. Hu, H. W. Blöte, and Y. Deng, J. Phys. A 45, 494006

(2012).
[80] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[81] L. P. Arguin, J. Stat. Phys. 109, 301 (2002).
[82] R. H. J. Otten and P. van der Schoot, Phys. Rev. Lett. 108,

088301 (2012).
[83] L. G. López, D. H. Linares, A. J. Ramirez-Pastor, and S. A.

Cannas, J. Chem. Phys. 133, 134706 (2010).
[84] N. G. Almarza, J. M. Tavares, and M.M. Telo da Gama,

J. Chem. Phys. 134, 071101 (2011).
[85] M. Henkel, Nucl. Phys. B641, 405 (2002).
[86] N. Kyriakopoulos, H. Chaté, and F. Ginelli, Phys. Rev. E
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