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Squeezed states are nonclassical resources of quantum cryptography and photonic quantum
computing. The higher the squeeze factor, the greater the quantum advantage. Limitations are set
by the effective nonlinearity of the pumped medium and energy loss on the squeezed states produced.
Here, we experimentally analyze for the first time the multistep distillation of squeezed states that in the
ideal case can approach an infinite squeeze factor. Heralded by the probabilistic subtraction of two
photons, the first step increased our squeezing from 2.4 to 2.8 dB. The second step was a two-copy
Gaussification, which we emulated. For this, we simultaneously measured orthogonal quadratures of
the distilled state and found by probabilistic postprocessing an enhancement from 2.8 to 3.4 dB. Our
new approach is able to increase the squeeze factor beyond the limit set by the effective nonlinearity of
the pumped medium.

DOI: 10.1103/PhysRevLett.129.273604

Squeezed states of light exhibit Gaussian uncertainties
of the electromagnetic field, some of whose variance is
smaller than that of the ground state [1–4]. They enable
continuous-variable quantum teleportation [5,6], the sen-
sitivity enhancements of atomic spectroscopy [7], and
gravitational wave detectors beyond photon shot noise
[8–10], and they are the basic resource of one-sided device-
independent quantum key distribution (QKD) [11] and
optical quantum computing [12]. Squeezed states of light
can be deterministically generated by a nonlinear process.
The most efficient approach uses resonator-enhanced para-
metric down-conversion pumped by conventional laser
light [13,14]. Squeezing the variance of the photon shot
noise by factors larger than 10 (10 dB) at some near
infrared wavelengths can be realized [15–17]. At other
wavelengths or in other systems, the available nonlinear-
ities are much smaller and limit the squeeze factors.
Recently, squeeze factors of (just) 1.1 and 1.3 were
realized ponderomotively by levitated nanoparticles in
free-space optical tweezers [18,19].
Gaussian squeezing is an irreducible resource [20]; any

combination of interference in passive linear interferome-
ters, homodyne detection, and feed-forward cannot distill
from an ensemble of arbitrary size another (smaller) one
with an enhanced squeeze factor [21]. This no-go theorem
is similar to the one about entanglement distillation of
Gaussian-squeezed two-mode states with local Gaussian
operations and classical communication [22–24]. So far,
just the de-Gaussifying photon subtraction was realized to
work around this no-go theorem, which resulted in non-
Gaussian entanglement or two-mode squeezing [25–28].

Also certain types of non-Gaussian squeezed states were
distilled solely by Gaussification [29,30]. It is now of
fundamental interest to prove that the combination of
these methods is efficient enough to outperform the
Gaussian squeeze factor limitation imposed by the avail-
able nonlinearity.
Here, we analyze multistep distillation of Gaussian

squeezed states and experimentally prove the principle of
enhancing squeezing beyond the nonlinearity limit. The
successful first distillation step is heralded by the probabi-
listic coincidence of two subtracted photons. Theoretically,
we find that an infinite number of additional two-copy
Gaussification and distillation steps produces an infinitely
large Gaussian squeeze factor, if and only if the initial state
is pure and squeezed by just 3 dB. This condition is not
fulfilled in our experiment, nevertheless, we realize a second
step to demonstrate further distillation and Gaussification.
For this we split the heralded distilled states and simulta-
neously measure the squeezed and antisqueezed quadrature
fields X̂Q and ŶQ. The data provide all the information of
the first step distilled state and allow us to emulate two-copy
Gaussification and distillation by probabilistic data post-
processing. The emulation saves us from additional hard-
ware. The second step can be repeated arbitrary times
depending only on the amount of sampled data. Our
emulation approach is a rigorous, data-based quantum
simulation of optical state processing.
Squeezed-state distillation.—Let us consider an

ensemble of a pure single-mode squeezed vacuum state
jψðrÞi with a squeeze factor β ¼ e2r > 1 as a canonical
example, where r is the squeeze parameter [1]. The state
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jψðrÞi is a minimum uncertainty state with Gaussian
Wigner function and quadrature variances Δ2X̂ ¼ e2r and
Δ2Ŷ ¼ e−2r, and it can be written as a superposition of the
ground state j0i and even number states j2ni (Fock states)
with monotonically decreasing probability amplitudes
as n increases [2]. “Distillation” describes the process
of creating a smaller ensemble of states with a larger
squeeze factor β0 > β by selecting only some of the initial
states, conditioned on the successful subtraction of two
photons. The subtraction of two photons preserves the
structure of the state in the Fock basis and it enhances
the amplitude of the two-photon state with respect to the
amplitude of the vacuum state. The (nonnormalized) state
after subtraction of two photons jψ2SðrÞi ¼ â2jψðrÞi
reads

jψ2SðrÞi ¼
tanh r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðrÞp

X

∞

n¼0

ð2nþ 1Þðtanh rÞn
ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p

2nn!
j2ni:

This state is non-Gaussian and well approximates an
“even” Schrödinger-cat-like state formed by the super-
position of two displaced coherent (squeezed) states
[31,32]. The variance of the squeezed quadrature of
the non-Gaussian state jψ2SðrÞi can be analytically
expressed,

Δ2ŶB ¼ e−2r
�

1 − 4
sinh r cosh r − 2sinh2r

2sinh2rþ cosh2r

�

;

where “B” refers to curve B in Fig. 1 with r ¼ rin. We find
that the subtraction of two photons enhances the

squeezing if and only if tanhðrÞ < 1=2 (β < 3), i.e., only
for moderate squeeze factors, see Fig. 1 for rin ≈ 0.55.
Since jψ2SðrÞi is non-Gaussian, its squeezing can be
further enhanced by an iterative Gaussification procedure
[33,34], where two copies of the state are overlapped at a
balanced beam splitter, and one output is accepted as
distilled if the other output mode is projected onto the
vacuum state. The distilled output then forms the input
for another iteration of the Gaussification [33,34]. The
squeeze parameter r2SG of an asymptotic Gaussian state
obtained by iterative Gaussification of the state jψ2SðrÞi is
given by tanhðr2SGÞ ¼ 3 tanhðrÞ. The Gaussification
of jψ2SðrÞi is beneficial if the initial squeezing is not
too small, because for r ≪ 1 the two-photon subtracted
state jψ2SðrÞi remains close to a Gaussian state. The
Gaussification converges only for tanhðrÞ < 1=3 (β < 2),
and when tanhðrÞ → 1=3, arbitrarily strong squeezing can
be distilled in principle from the initially close to 3 dB-
squeezed state, where the decibel scale is given by
10 dBlog10β. This is illustrated in Fig. 1. Not illustrated
is the fact that all other input squeeze strengths can also
be distilled to arbitrarily strong squeezing, if the two-
photon subtraction is combined with appropriate coherent
displacements [35].
Experimental.—Figure 2 shows the schematic of the

optical setup. The master laser was a continuous-wave Nd:
YAG laser that provided an ultrastable light beam of up to
2 Wat 1064 nm in the TEM00 mode. Most of this light was
frequency doubled and used to pump resonator-enhanced,

FIG. 1. Potential of our distillation protocol. Variances of sque-
ezed quadrature uncertainties Δ2Ŷ as a function of the squeeze
parameter rin before distillation. A: Initial, pure Gaussian
squeezed vacuum state. B: Two-photon subtracted non-Gaussian
squeezed vacuum state. C: Gaussian squeezed vacuum state in the
asymptotic limit of multistep distillation Gaussification. For an
initially pure 3 dB squeezed state (rin ¼ rth ≈ 0.3466), Δ2Ŷ → 0.
The Gaussification converges only for r < rth, where curve C
ends. Note, our experiment (red arrows) started from a slightly
mixed Gaussian state.

FIG. 2. Optical setup. Resonator-enhanced parametric down-
conversion (PDC) produced a beam of subsequent modes in
identical squeezed vacuum states. 10% of the states’ energy was
tapped and distributed onto two superconducting nanowire
single-photon detectors (SNSPD1,2). 90% of the optical energy
was also split and absorbed by two balanced homodyne detectors
(BHD1,2) that simultaneously measured the quadratures X̂Q and
ŶQ. The subscript “Q” indicates data taken on halves of the beam.
An interference filter (IF) and two optical filter cavities of
different lengths (FC1,2) rejected the optical spectrum outside
the BHD bandwidth. LO: continuous-wave local oscillator
(1064 nm); PS: phase shifter; SH: second-harmonic pump field
(532 nm).
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type I degenerate parametric down-conversion (PDC)
process below the oscillation threshold. The nonlinear
material inside the resonator was periodically poled
KTiOPO4. The PDC resonator had a HWHM linewidth
of about 0.05 GHz and produced a continuous stream of
squeezed vacuum states in a TEM 00 beam with a squeeze
factor of up to β ¼ 10 (10 dB) with a free spectral range of
4.6 GHz. For the experiments here, we reduced the pump
power, limiting the effective nonlinearity and producing a
2.4 dB squeezed state with barely measurable mixedness
[17]. The squeezed vacuum beam was split with a power
ratio of 90=10. The “signal” beam (higher fraction) was
measured with a pair of balanced homodyne detectors
(BHD) with quantum efficiencies above 98%. One balanced
homodyne detector continuously measured the squeezed
quadrature ŶQ and the other one simultaneously the anti-
squeezed quadrature X̂Q on halves of the beam. Each pair
ðXQ

j ;Y
Q
j Þ corresponded to a point in two-dimensional (2D)

phase space, where the quasiprobability density function is
the Husimi Q function [36]. This type of detection has been
called “8-port homodyne detection” or “heterodyne detec-
tion.” We introduce here the term “simultaneous 2D BHD”
because we consider it more descriptive and less ambiguous
than previous terms.
The “trigger” beam (10% fraction) was spectrally

filtered by an interference filter with a transmission
peak at 1064 nm and a FWHM of 0.64 nm and
subsequently by two length-controlled Fabry-Perot reso-
nators [37]. They had large free spectral ranges of
56.8 and 47.8 GHz and FWHM linewidths of 181
and 153 MHz to filter out all squeezed field components
that were outside the ≈200 MHz HWHM detection
bandwidth of the BHDs. The filtered beam was distrib-
uted to two superconducting nanowire single-photon
detectors with quantum efficiencies greater than 93%
(SNSPD1,2). The data of the BHDs was only analyzed,
when both of the SNSPDs detected a photon within a
window of 6.4 ns. In this case, the signal beam contained
a mode in a squeezed vacuum state of which two
photons were subtracted. We determined the FWHM
width of the temporal mode fðtÞ to about 12 ns, see
Fig. 1 of Supplemental Material [38].
Results and discussion.—We performed the entire dis-

tillation protocol twice on two different days to show
reproducibility. In both runs, we recorded 1.65 × 106 two-
photon subtraction events. For each event j we have
simultaneously sampled time-resolved quadrature values
X̂Q
j ðtÞ and ŶQ

j ðtÞ within a 64 ns long time window centered
on the subtraction event. Figure 3 shows the two pairs of
time-resolved variances Δ2X̂QðtÞ ¼ ðΔ2X̂ðtÞ þ 1Þ=2 and
Δ2ŶQðtÞ ¼ ðΔ2ŶðtÞ þ 1Þ=2, where Δ2X̂ðtÞ and Δ2ŶðtÞ
denote the corresponding variances of the signal beam
before it was split for simultaneous 2D BHD. (The factor of
1=2 is due to the vacuum uncertainty entering the open

port.) At the times around successful two-photon subtrac-
tion, which we deliberately set to zero in Fig. 3, the
antisqueezed variance increased (upper plot) and the
squeezed variance got reduced (lower plot). The observed
dip represents the direct experimental manifestation of
squeezing enhancement via two-photon subtraction.
Variances sufficiently far away from the time of photon
subtraction can be approximated by horizontal lines, which
represent the levels of antisqueezing and squeezing without
photon subtraction, respectively.
The temporal shape fðtÞ of the mode that contained the

two-photon subtracted state was extracted from the
temporal covariance matrix of the antisqueezed quad-
rature [39]. We took into account the nontrivial structure
of the covariance matrix for vacuum input which is
related to the response function of our detector, see
Supplemental Material [38] for details. The recorded

FIG. 3. Variances after two subtracted photons. Shown are the
results of two independent measurement runs with slightly
different initial squeeze factors. The quadrature variances
Δ2X̂QðtÞ (top, from BHD1) and Δ2ŶQðtÞ (bottom, from
BHD2) include the time when both SNSPDs clicked, to which
both x axes are referenced to (t ¼ 0). The traces are calculated
from 106 individual measurements on halves of the beam and
represent data from which the Husimi Q function [36] can be
calculated. Around t ¼ 0, the antisqueezing as well the squeezing
are enhanced, which represents the distillation success of the first
step of our protocol. Note that the data include frequencies
outside the bandwidth of the squeezing resonator. This dilutes the
actual squeeze factor from Δ2ŶQðtÞ ≈ 0.79 (2.4 dB) to about
0.866 in #2.
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windows were weighted by fðtÞ and integrated over time.
The results were 1.65 × 106 quadrature pairs X̂Q

mode and
ŶQ
mode for each of the two runs, representing results of

simultaneous 2D BHD on identical modes with the
temporal profile fðtÞ. The same procedure was applied
to characterize the same mode in a vacuum state to yield
the quadrature variances for shot-noise normaliza-
tion. The two-dimensional histogram of the measurement
outcomes α ¼ XQ

mode þ iYQ
mode corresponded to the

Husimi Q function, which completely characterizes the
measured state. From this, we reconstructed the density
matrix in Fock basis using the statistically motivated and
robust maximum-likelihood reconstruction algorithm
[40,41], see Supplemental Material [38] for details.
Figure 4 shows Wigner functions [42] of states of the

mode with temporal profile fðtÞ calculated from the
reconstructed density matrices. It represents the result of
our work. Panel A shows the initial Gaussian squeezed
vacuum state before photon subtraction with a squeeze
factor of 2.4 dB. Panel B shows the two-photon subtracted
state of the same mode. It is clearly non-Gaussian. The
squeeze factor increased to 2.8 dB. We also determined the
quadrature variances directly from the measured quadra-
tures and found excellent agreement. Since we used
simultaneous 2D BHD, the full phase space data were
recorded for each individual copy. This enabled us to
emulate the second distillation step. We calculated the
interference of two measurement outcomes α2j and α2jþ1,
where 1 ≤ j ≤ 8.25 × 105, at a balanced beam splitter by
αjþ ¼ ðα2j þ α2jþ1Þ=

ffiffiffi

2
p

and αj− ¼ ðα2j − α2jþ1Þ=
ffiffiffi

2
p

. If
the amplitude in the constructively interfering output by
chance obeys jαþj2 < n̄, where n̄ is a freely choosable hard
boundary, a state with improved squeezing emerges in the
destructively interfering output port. The complex ampli-
tude αj− represents further distilled, partly Gaussified
states. Figure 4(c) shows the result after one such additional

Gaussification step with n̄ ¼ 1.3. The squeeze factor is
increased to 3.14 dB. Our emulated two-copy distillation is
as efficient as the hardware-based version with perfect
quantum memories at hand [43].
Figure 5 shows the improvement of the squeezed variance

Δ2Ŷ versus the success probability Psvv (the survival rate) in
our second step Gaussification protocol. Since two input
copies produce only one output copy, we have Psvv ≤ 0.5,
and the lower the threshold n̄, the more the probability of
success is further reduced. At 25%, squeezing exceeds
3.1 dB. Convergence of the iterative Gaussification protocol
can be analyzed for Gaussian acceptance probability PðαÞ ¼
expð−jαj2=n̄Þ [44], see Supplemental Material [38]. For the
condition in Fig. 4(b) we find convergence for n̄ > 0.3, with
the maximum distillable squeeze factor of 4.6 dB. However,
a single step can only be analyzed numerically, and our
emulation, the results of which are shown in Fig. 5, provides
an accurate characterization of the practical performance of
the protocol.

FIG. 4. Reconstructed Wigner functions. (a) The initial 2.4 dB-squeezed vacuum state. (b) The initial state distilled by the subtraction
of two photons yielding 2.8 dB squeezing. (c) Example of the subsequently two-copy-two-step-distilled and Gaussified squeezed
vacuum state for n̄ ¼ 1.3 having 3.14 dB squeezing, see Fig. 5. The Gaussification step reduced the ensemble size to the fraction
Psvv ¼ 0.246. Additional two-copy distillation steps are possible in principle if the amount of samples is sufficiently high. The “mode”
is defined by the temporal shape fðtÞ and its Fourier transform limited spectrum.

FIG. 5. Distilled squeezed variance as in Fig. 4(c) versus
success probability of the Gaussification step PG

svv. Our best
result of about 0.453 (≈ − 3.4 dB) occurs when the ensemble size
decreases most.
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Conclusion.—Distillation of the pure 3 dB squeezed
Gaussian state can theoretically approximate the ideal,
pure, and infinitely squeezed Gaussian state by following
a two-photon subtraction with an infinite number of two-
copy Gaussification and distillation steps. In our experi-
ment, the distillation of an initially nearly pure Gaussian
state at 2.4 dB was realized by two-photon subtraction
followed by a single two-copy Gaussification and distil-
lation step. We exceed the relevant threshold of 3 dB, which
would allow us, for example, to overcome the no-cloning
limit in quantum teleportation [6].
We achieved the two-copy Gaussification and distillation

step by postprocessing subsequently measured Q-function
data. The result is indistinguishable from the hardware
approach that even uses perfect quantum memories [43].
Our “emulated” approach can in principle be applied to any
quantum protocol where the intended distillation by
Gaussification is directly followed by heterodyne detection.
Then it has only advantages, such as efficient scalability to
further two-copy Gaussification and distillation steps.
Our work addressed the situation where the maximum

squeeze factor was limited by too low an effective non-
linearity of the source. The initial squeeze factor in our
experiment was artificially reduced by an intentionally
decreased pump power. In practice, there are situations
where high pump powers must actually be avoided because
otherwise the nonlinear medium is destroyed, for example,
at shorter wavelengths [45]. Avoiding enhancement
cavities [18,19] also leads to low effective nonlinearities,
but in return to a wider squeeze bandwidth; it also reduces
optical losses, which in combination with our approach can
lead to higher squeeze factors. Another useful scenario is
when suboptimal parameters of the source [46] cannot be
easily improved, for instance, if the source is used for
satellite-based QKD and thus located on a satellite.
It can be shown that photon subtraction followed by

Gaussification can enhance the squeeze factor but it cannot
counteract losses in quantum communication [35,47], and
more advanced techniques are required to distill purified
entangled states [47–49]. But we note that a pure single-
mode squeezed state can be distilled from a large class of
mixed states if the state is de-Gaussified by the operation
n̂ − 1, which removes the single-photon term, followed by
Gaussification. A detailed analysis of this procedure will be
provided in future work [35].
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