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The algorithmic error of digital quantum simulations is usually explored in terms of the spectral norm
distance between the actual and ideal evolution operators. In practice, this worst-case error analysis may
be unnecessarily pessimistic. To address this, we develop a theory of average-case performance of
Hamiltonian simulation with random initial states. We relate the average-case error to the Frobenius norm
of the multiplicative error and give upper bounds for the product formula (PF) and truncated Taylor series
methods. As applications, we estimate average-case error for the digital Hamiltonian simulation of general
lattice Hamiltonians and k-local Hamiltonians. In particular, for the nearest-neighbor Heisenberg chain
with n spins, the error is quadratically reduced from OðnÞ in the worst case to Oð ffiffiffi

n
p Þ on average for both

the PF method and the Taylor series method. Numerical evidence suggests that this theory accurately
characterizes the average error for concrete models. We also apply our results to error analysis in the
simulation of quantum scrambling.
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Simulating the time evolution of quantum systems is one
of the most promising applications of quantum computers
[1]. Quantum simulation allows quantum computers to
efficiently mimic quantum dynamics, a task that is believed
to be classically intractable. Quantum simulation could be
applied to study numerous systems, including spin models
[2], fermionic lattice models [3], quantum chemistry [4–6],
and quantum field theories [7].
Following the first concrete digital quantum simulation

algorithm proposed by Lloyd [8], many improved algo-
rithms have been developed [9–13]. Algorithms are now
known that have optimal or nearly optimal gate complexity
with respect to several key parameters [12–16]. However,
since outperforming classical computers requires control-
ling many qubits with high accuracy, it is challenging to
realize digital quantum simulation on current hardware.
In particular, consider a Hamiltonian of the form

H ¼P
L
l¼1 Hl, kHlk ≤ 1. Most known algorithms have

algorithmic error scaling at least linearly with the number
of terms L, making simulations of large systems costly or
inaccurate [11–13,17,18]. Typical error analysis quantifies
error in terms of the spectral norm, which characterizes the
worst-case input and output in a Hamiltonian simulation

problem. However, such an error bound can be pessimistic
in practice, especially given prior knowledge of input states
or measurements. In particular, error bounds can be
tightened if the initial state is in a low-energy subspace
[19], within the η-electron manifold [20], for measurements
of local observables [21,22], and for simulations of
unbounded time-dependent Hamiltonians [23].
Alternatively, to go beyond worst-case analysis and

advance our theoretical understanding of quantum simu-
lation, it is natural to quantify the performance in terms
of the average error for instances drawn at random from
some ensemble. In this Letter, we study such average-case
performance of Hamiltonian simulation algorithms. While
mathematically one can consider states drawn from the
Haar measure, our analysis only requires the much weaker
1-design property, i.e., indistinguishability from the
Haar measure given a single copy of the state. Note that
many easily prepared sets of states form 1-designs. For
instance, a locally random state ⊗n

i¼1 Uij0i⊗n, with each
Ui being a single-qubit Haar-random unitary, forms a
1-design. The uniform distribution over any orthonormal
basis, such as the computational basis ensemble E¼
fð1=2n;j0…00iÞ;ð1=2n;j0…01iÞ;…;ð1=2n;j1…11iÞg,
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also gives a 1-design. These inputs are widely used in
quantum computing and quantum simulation tasks, so this
is an average over a reasonable set of states. In general, we
relate the average performance to the Frobenius norm of the
multiplicative error. Intuitively, whereas worst-case error
bounds scale with the largest eigenvalue of the multipli-
cative error, the Frobenius norm captures the average
(specifically, root mean square) eigenvalue.
We upper bound the average error for both the pth-order

product formula (PFp) method and the truncated Taylor
series method [11]. For PFp, we give a bound in terms
of the sum of the Frobenius norms of the (pþ 1)-layer
nested commutators. In particular, we give bounds for
PF1 and PF2 with detailed prefactors. Similarly to the
worst-case analysis [24], for the average case we also
observe destructive error interference in a nearest-neighbor
Hamiltonian with the PF1 method, further tightening
the error bound. In particular, we show that for a one-
dimensional nearest-neighbor Heisenberg Hamiltonian
with n spins, for both the PF and Taylor series methods,
average-case analysis gives error Oð ffiffiffi

n
p Þ, quadratically

smaller than the worse-case error of OðnÞ.
We also explore the simulation of general k-local

Hamiltonians and power-law Hamiltonians. Numerical
results suggest that our analytical bounds are not far from
tight in typical examples. Moreover, our techniques can be
directly used to tighten the Trotter error and reduce the gate
complexity in studying out-of-time-order correlators in
scrambling physics. We hope that our techniques can
inspire further improvements to the analytical performance
of quantum simulation algorithms by leveraging particular
features of specific simulations.
Worst- and average-case error.—Quantum simulation

aims to realize the time-evolution operator U0ðtÞ ≔ e−iHt

of a given Hamiltonian H. This task is crucial for studying
both dynamic and static properties. In most previous
methods, the distance between the ideal evolution U0ðtÞ
and the approximated evolution UðtÞ (as implemented by
some Hamiltonian simulation algorithm) is quantified by
the spectral (i.e., operator) norm k · k, which is the largest
singular value. This measure captures the error for the
worst-case input state, since

WðU;U0Þ ≔ kU −U0k ¼ max
jψi
kUjψi −U0jψik2; ð1Þ

where k · k2 denotes the l2 (i.e., Euclidean) norm.
However, the worst-case error may be a significant

overestimate for some initial states [23]. Instead, we
consider the typical error for input states chosen at random
from some ensemble E ¼ fðpi;ψ iÞg, defined as

RðU;U0Þ ≔ EE ½DðUjψi; U0jψiÞ�; ð2Þ
where D is a distance measure (which we take to be either
the l2 norm or the trace norm). Specifically, we study the
average error and its variance, and relate them to the

Frobenius norm kXkF ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðXX†Þ

p
(also known as the

Hilbert-Schmidt norm).
For concreteness, consider the l2 norm. Using the

Cauchy-Schwartz inequality, we have the upper bound
RðU;U0Þ ≤ ðEψkUjψi − U0jψik22Þ1=2 for the average l2

error. We define the variable inside the square root as

SðψÞ≔ kUjψi−U0jψik22 ¼ 2− hψ jU†U0þU†
0Ujψi ð3Þ

and calculate its expectation and variance as follows.
Theorem 1. For an input state drawn randomly from a

1-design ensemble E in an n-qubit Hilbert space with
dimension d ≔ 2n, the average l2 error between the ideal
evolution U0 and its approximation U has the upper bound

RðU;U0Þ ≤ ½EψSðψÞ�12 ¼
1ffiffiffi
d
p kMkF; ð4Þ

where M is the multiplicative error, i.e., U ¼ U0ðI þMÞ.
When the input ensemble is a 2-design, the variance of SðψÞ
has the upper bound Var½SðψÞ� ≤ ½4kMk2F=dðdþ 1Þ�.
Armed with the mean and variance, we know that for an

input state ψ drawn from E, the squared error SðψÞ is far
from the mean value EψSðψÞ with small probability due to
the Chebyshev inequality.
This theorem can also be extended to the case where the

input state is chosen at random from a subsystem of an n-
qubit Hilbert space. Specifically, we have the upper bound
RΠðU;U0Þ ≤ kMΠkF=

ffiffiffiffiffi
d1
p

, where Π projects onto a
subsystem of dimension d1. These subsystem results can
be used to analyze the Trotter error in out-of-time-
order correlator (OTOC) problems, as discussed in the
Application section. More generally, in Section I of the
Supplemental Material [25] we give results for the trace
norm, approximate 1-design ensembles, and the average
error with random inputs and random projections.
Average error in Hamiltonian simulation algorithms.—

Two major classes of digital Hamiltonian simulation
algorithms include product formula (PF) simulations and
methods using linear combinations of unitaries (LCU) to
directly implement the Taylor series [11]. Here we focus on
the average error in PFp and Taylor series methods.
For a short evolution time t, the PF1 algorithm for a

Hamiltonian
P

L
l¼1Hl applies the unitary operation

U1ðtÞ ≔ e−iH1te−iH2t � � � e−iHLt ¼
Y
l

�!
e−iHlt: ð5Þ

Here the right arrow indicates the product is in the order of

increasing indices. Similarly, we write Π l to denote a
product in decreasing order. Suzuki’s high-order product
formulas are defined recursively by

U2ðtÞ≔
Y
l

�!
e−iHlt=2

Y
l

 �
e−iHlt=2;

U2kðtÞ≔ ½U2k−2ðpktÞ�2U2k−2½ð1−4pkÞt�½U2k−2ðpktÞ�2; ð6Þ
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where pk ≔ ½1=ð4 − 41=ð2k−1ÞÞ� for k > 1 [36]. Overall,
with S ¼ 2 · 5k−1 stages, the evolution has the form

U2kðtÞ ¼
YS
s¼1

YL
l¼1

e−itasHπsðlÞ : ð7Þ

In each stage s, we implement evolution according to the
terms in increasing or decreasing index order (specified by
πs, which is either trivial or the reversal) for time tas. For a
long time t, we divide the evolution into r steps and apply
the given product formula r times, approximating the
evolution as Ur

2kðt=rÞ. By upper bounding kMkF, we find
the following bound on the average-case performance of
PFp, where p ¼ 1 or p ¼ 2k.
Theorem 2. For the PFp simulation Ur

pðt=rÞ specified
by Eq. (7), the average error in the l2 norm for a one-
design input ensemble has the asymptotic upper bound
R ≤ kMkF=

ffiffiffi
d
p ¼ OðTptpþ1=rpÞ, where

Tp ≔
XL

l1;…;lpþ1¼1

1ffiffiffi
d
p k½Hl1 ; ½Hl2 ;…; ½Hlp; Hlpþ1 ���kF: ð8Þ

Therefore r ¼ OðTð1=pÞp t1þð1=pÞε−ð1=pÞÞ segments suffice to
ensure average error at most ε. Furthermore, the same
bounds hold for the average error with respect to the
trace norm.
For comparison, the worst-case spectral norm error [18]

is W½Ur
pðt=rÞ; U0ðtÞ� ¼ Oðαcomm;ptpþ1=rpÞ, where

αcomm;p ≔
XL

l1;…;lpþ1¼1
k½Hl1 ; ½Hl2 ;…; ½Hlp; Hlpþ1 ���k: ð9Þ

Observe that Tp ≤ αcomm;p, and αcomm;p can be much larger
than Tp. For instance, for an n-qubit nearest-neighbor

Hamiltonian, αcomm;p ¼ OðnÞ and Tp ¼ Oð ffiffiffi
n
p Þ. Thus we

obtain a quadratic improvement with respect to the para-
meter n over the worst-case error scaling. For other types of
Hamiltonians, we also obtain various degrees of asymptotic
improvement, as shown in the Applications section.
In the following, for PF1 and PF2 we tighten the upper

bounds on kMkF by moving some summations inside the
Frobenius norm and giving concrete prefactors.
Theorem 3 (Triangle bound). For the PF1 and PF2

algorithms, the average error in the l2 norm has the upper
bounds

R½Ur
1ðt=rÞ; U0ðtÞ� ≤

t2

r
T 01; R½Ur

2ðt=rÞ; U0ðtÞ� ≤
t3

r2
T 02;

where

T 01 ≔
1

2
ffiffiffi
d
p

XL−1
l1¼1

����
�
Hl1 ;

XL
l2¼l1þ1

Hl2

�����
F

; ð10Þ

T 02 ≔
1

12
ffiffiffi
d
p

XL
l1¼1

����
� XL
l2¼l1þ1

Hl2 ;

� XL
l2¼l1þ1

Hl2 ; Hl1

������
F

þ 1

24
ffiffiffi
d
p

XL
l1¼1

����
�
Hl1 ;

�
Hl1 ;

XL
l2¼l1þ1

Hl2

������
F

: ð11Þ

The numerical results shown in Fig. 1 suggest that these
tighter bounds can be close to optimal for PF2. However,
we find a gap between the triangle bounds (green curve)
and empirical results (blue curve) for PF1 with a nearest-
neighbor Hamiltonian. This phenomenon results from
destructive error interference between different segments
that is not captured when applying the triangle inequality,

FIG. 1. Comparison of minimum r using different error bounds for the one-dimensional Heisenberg model in Eq. (15). For each
system size, we generate five Hamiltonians Hi with random coefficients. We plot the mean and standard deviation of rðt; ε; HiÞ defined
in Eq. (14).
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as also seen in a previous worst-case analysis [24]. Here we
further tighten the result for PF1 as follows.
Theorem 4 (Interference bound). Consider the

Hamiltonian H ¼P
j;jþ1 Hj;jþ1 where Hj;jþ1 acts non-

trivially on qubits j, jþ 1, and kHj;jþ1k ≤ 1. Let
UðtÞ ≔ ðe−iAt=re−iBt=rÞr where A ≔

P
oddj Hj;jþ1, B ≔P

evenj Hj;jþ1. If k½A; B�kt2=2r is at most a constant
smaller than 1, the average error of PF1 is

R½UðtÞ; U0ðtÞ� ¼ O
� ffiffiffi

n
p �

t
r
þ t3

r2

��
: ð12Þ

This refined error analysis better reflects the empirical
results (see Fig. 1). We explain this in more detail in the
Supplemental Material [25].
Finally, we can also bound the average error in

the Kth-order truncated Taylor series method, redu-
cing the worst-case error Oðαt½ðln 2ÞKþ1=ðK þ 1Þ!�Þ to
Oðmaxi

ffiffiffiffiffiffiffi
αiα
p

t½ðln2ÞKþ1=ðKþ 1Þ!�Þ where H¼P
L
l¼1αlHl

and α ≔
P

L
i¼1 αi. However, since the gate complexity of

the LCU method is logarithmic in 1=ε, the gate reduction
for the Taylor series method is mild.
Application 1: Lattice Hamiltonians.—For a lattice

Hamiltonian with nearest-neighbor interactions, we have
Tp ¼ Oð ffiffiffi

n
p Þ for the pth-order Trotter algorithm (p ≥ 1).

For comparison, the corresponding worst-case parameter is
αcomm;p ¼ OðnÞ. Consequently, the asymptotic gate com-
plexity is reduced from Oðn2t2Þ in the worst case to
Oðn1.5t2Þ on average for PF1 (triangle bound), and from
Oðn1.5t1.5Þ in the worst case to Oðn1.25t1.5Þ on average for
PF2. These theoretical bounds for PF methods agree well
with the empirical results shown in Fig. 1.
Application 2: k-local Hamiltonians.—Consider

a k-local Hamiltonian H ¼P
l1;…;lk

Hl1;…;lk acting on
n qubits, where each Hl1;…;lk acts nontrivially on at most
k qubits.We show that the average error is related to the sum
of Frobenius norms kHk1;F ≔

P
l1;…;lk kHl1;…;lkkF,

an induced permutation norm jjjHjjjper defined in the
Supplemental Material [25], and the induced 1-norm
jjjHjjj1 defined in Ref. [18]. Specifically, we find
T 01 ¼ OðkHk1;FjjjHjjjper=

ffiffiffi
d
p Þ and T 02¼OðkHk1;FjjjHjjj1×

jjjHjjjper=
ffiffiffi
d
p Þ. For comparison, the commutator bounds in

the worst case are αcomm;1 ¼ OðkHk1jjjHjjj1Þ and
αcomm;2 ¼ OðkHk1jjjHjjj21Þ. For simplicity, consider the
case where kHl1;…;lkk ≤ 1 for each term. Then

kHk1 ≤ nk, kHk1;F=
ffiffiffi
d
p

≤ nk, jjjHjjjper ¼ Oðn½ðk−1Þ=2�Þ,
and jjjHjjj1 ¼ Oðnk−1Þ. We summarize the resulting errors
for the PF1 and PF2 in Table I. These results also apply to k-
local fermionic Hamiltonians such as SYK models,
as discussed in Section VI.C of the Supplemental
Material [25].
Application 3: Power-law interactions.—Consider

power-law interactions on a D-dimensional lattice

Λ ⊂ RD, with two-site interactions H ¼P
i;j∈Λ Hi;j.

Suppose the interaction strength decays as the
power law

kHi;jk ≤
	
1 i ¼ j

1
ki−jkα i ≠ j

ð13Þ

for some α ≥ 0, where ki − jk denotes the Euclidean
distance. We show in the Supplemental Material [25] that
jjjHjjj2per ≤ jjjHjjj1. We present the error scaling for power-
law interactions with 0 ≤ α < D, α ¼ D, and α > D in
Table II. The comparison to empirical performance shown
in Fig. 2 suggests that our theoretical bounds are reason-
ably tight.
Application 4: Out-of-time-order correlators.—As a

final example, consider the (infinite-temperature) OTOC
for two commuting local observables X and Y, hOðtÞi ≔
hY†ðtÞX†YðtÞXi where YðtÞ ≔ eiHtYe−iHt in the
Heisenberg picture [37,38]. To measure the OTOC in an
experiment [39], an initial state ρ ⊗ Id1=d1 is prepared
where ρ is the state of the first qubit and Id1=d1 is the
maximally mixed state of the remaining n − 1 qubits,
where d1 ≔ 2n−1. After the unitary evolution V0 ≔
eiHtYe−iHt (assuming Y is unitary), the measurement X
is performed on the first qubit. In practice, eiHt and e−iHt

can be approximated via PF methods. Viewing the initial
state ρ ⊗ Id1=d1 as a mixture of randomly chosen states on
an (n − 1)-qubit subsystem, we can use our results to
quantify the Trotter error. For example, suppose H is a
nearest-neighbor Hamiltonian (as described above) and
eiHt and e−iHt are approximated via PF2. Then for a given
constant Trotter error ε, we can reduce the gate complexity
of an OTOCmeasurement fromOðn1.5t1.5Þwith worst-case
analysis to Oðn1.25t1.5Þ. Similar techniques can be adopted
to quantify the Trotter error in algorithms to estimate
Trðe−iHtÞ, with applications such as the trace estimation
in the one clean qubit model [40,41]. See Section VI.E of
the Supplemental Material [25] for further details.
Numerical results.—To investigate the tightness of our

theoretical bounds, we compare them with empirical error
data. We measure the complexity in terms of the average
Trotter number for the pth-order formula Up for a given
instance of Hamiltonian Hi,

rðt; ε; HiÞ ≔ min

	
r∶Eψ

����
�
Ur
p

�
t
r

�
− e−itHi

�
jψi

����
2

≤ ε




ð14Þ

TABLE I. Errors for k-local Hamiltonian simulation with PF1
and PF2 methods.

Order Worst-case error [18] Average error

p ¼ 1 Oððt2=rÞn2k−1Þ Oððt2=rÞn½ð3k−1Þ=2�Þ
p ¼ 2 Oððt3=r2Þn3k−2Þ Oððt3=r2Þn½ð5k−3Þ=2�Þ
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which guarantees the expectation value of the error is below
a given simulation accuracy ε. For each instance of Hi, we
set evolution time t ¼ n, error threshold ε ¼ 10−3, and
generate 20 Haar-random inputs. For comparison, we also
show the worst-case empirical Trotter numbers by directly
computing the spectral norm error (see the data indicated
by asterisks in Figs. 1 and 2.)
Here the triangle and interference bounds correspond to

the results in Theorems 3 and 4, respectively. The counting
bound is presented in Sec. VII.A.3 and Sec. VII.B.2 of the
Supplemental Material [25].
We first consider the one-dimensional Heisenberg model

with a random magnetic field,

H ¼
Xn−1
j¼1
ðXjXjþ1 þ YjYjþ1 þ ZjZjþ1Þ þ

Xn
j¼1

hjZj; ð15Þ

with uniformly random coefficients hj ∈ ½−1; 1�. The
Hamiltonian summands can be partitioned into two sets
in an even-odd pattern [42]. Figure 1 compares the
empirical Trotter number for PF1 and PF2 with the
theoretical bounds in Theorems 3 and 4. The interference
bound curve and the triangle bound curve match the
empirical results for PF1 and PF2 well, respectively.
However, because of the additional assumption of

Theorem 4, for large t and n, Oðnt2=rÞ will dominate,
significantly increasing r. The analysis in the worst case
also suffers from a similar problem [24]. We elaborate on
this point in the Supplemental Material [25]. The tech-
niques in Ref. [43] may help to strengthen and simplify our
interference bound.
We also consider the one-dimensional Heisenberg model

with power-law interactions, with the Hamiltonian

Xn−1
j¼1

Xn
k¼jþ1

1

jj− kjα ðXjXkþYjYkþZjZkÞþ
Xn
j¼1

hjZj ð16Þ

with uniformly randomly coefficients hj ∈ ½−1; 1� and α a
parameter controlling the decay of the interactions. We
consider a rapidly decaying power law with α ¼ 4 and the
infinite-range case with α ¼ 0. We analyze product for-
mulas with X-Y-Z order [17], as shown in Fig. 2. We again
find that our error bounds are reasonably tight in many
cases, but are somewhat loose for PF1 with shorter-range
interactions. In particular, for the α ¼ 0 case, extrapolation
suggests an improvement by 2 orders of magnitude at
n ¼ 50. For more detail, see Table IV of the Supplemental
Material [25].
In Section VII of the Supplemental Material [25], we

also show empirical results for PF4 and PF6 (which
align well with our asymptotic results in Theorem 2), other

TABLE II. Errors for PF1 and PF2 simulations of power-law interaction Hamiltonians.

0 ≤ α < D α ¼ D α > D

Order Worst-case error Average error Worst-case error Average error Worst-case error Average error

p ¼ 1 Oððt2=rÞn3−2α=DÞ Oððt2=rÞn5
2
−3α=2DÞ Oððt2=rÞnlog2ðnÞÞ Oððt2=rÞnlog3

2ðnÞÞ Oððt2=rÞnÞ Oððt2=rÞnÞ
p ¼ 2 Oððt3=r2Þn4−3α=DÞ Oððt3=r2Þn7

2
−5α=2DÞ Oððt3=r2Þnlog3ðnÞÞ Oððt3=r2Þnlog5

2ðnÞÞ Oððt3=r2ÞnÞ Oððt3=r2ÞnÞ

FIG. 2. Comparison of minimum r using different error bounds for the one-dimensional Heisenberg model with power-law
interactions in Eq. (16).
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1-design inputs, and the standard deviations of random
inputs.
Conclusions and open problems.—In this Letter, we

have developed a theory of average error for Hamiltonian
simulation with random input states. Though previous
methods already provide optimal performance in terms
of worst-case error, we find further improvement when
considering the average case. Our techniques might also be
extended to quantify the algorithmic error in imaginary
time evolution [44] and quantum Monte Carlo methods
[45,46]. Moreover, the average error performance could be
achieved by entangled states whose local density matrices
are (approximately) maximally mixed, such as the
k-uniform state [47], suggesting a connection between
the simulation algorithm error and quantum thermalization.
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