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The long-range spin chains play an important role in the gauge-string duality. The aim of this Letter
is to generalize the recently introduced transfer matrices of integrable medium-range spin chains to
long-range models. These transfer matrices define a large set of conserved charges for every length of
the spin chain. These charges agree with the original definition of long-range spin chains for infinite
length. However, our construction works for every length, providing the definition of integrable finite-size
long-range spin chains whose spectrum already contains the wrapping corrections.
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Introduction.—In the early studies of the planar limit
of the N ¼ 4 super-Yang-Mills theory, it turned out that
the anomalous dimensions of single-trace operators can be
obtained from the spectrum of an integrable Hamiltonian
with long-range interaction. At one loop, the dilatation
operator corresponds to an integrable nearest-neighbor
interacting model [1]. For higher loops, the interaction
range increases; more precisely, the interaction range is
lþ 1 at l loops.
In the region where the spin chain length J is bigger than

the loop order (the asymptotic region), the Hamiltonian can
be written as a sum of local densities. For these local
operators, the integrability condition can be generalized,
and it was shown that the Hamiltonian of the SUð2Þ sector
preserves integrability for higher loops [2]. These local
Hamiltonians can be diagonalized with the asymptotic
Bethe ansatz [3], and the result can be generalized to the
full psuð2; 2j4Þ spectrum [4]. However, this result is
correct only in the asymptotic region. In the region where
the spin chain length J is smaller than the loop order
(the wrapping region), wrapping corrections appear [5]. So
far, it was not clear whether good spin chain toy models,
which mimic the wrapping corrections, could be found—
i.e., even if an asymptotic Hamiltonian were given, we
could not define the corresponding finite-size Hamiltonian.
The solution for the wrapping corrections came from

holographic duality. In the string theory side, the scaling
dimensions correspond to the energy spectrum of strings
which can be described as a 1þ 1-dimensional integrable

field theory [6]. In field theory, if we know the dispersion
relation and the scattering matrix at infinite volume, then
we can calculate the finite-volume spectrum as well (at
least in principle). The finite-size corrections can be
obtained from the thermodynamic Bethe ansatz [7–10],
and it has been shown that they agree with the wrapping
corrections [11–13].
Since the asymptotic data of the string theory (dispersion

relation, scattering matrix) completely defines the finite-
size corrections, a natural conclusion is that the asymptotic
data on the spin chain side should also define the wrapping
corrections. In other words, there must be a procedure that
gives the finite-size Hamiltonians from the asymptotic
ones. The aim of this Letter is to present such a method.
Recently, an algebraic framework was developed for

integrable medium-range spin chains (with an interaction
range bigger than 2, but finite) [14]. This method gives a
recipe for how to define transfer matrices which are the
generating functions of the conserved quantities, including
the Hamiltonians. An interesting observation is that this
transfer matrix is well defined even when the length of the
spin chain is smaller than the interaction range; therefore,
generalizing this method to long-range spin chains, we
obtain transfer matrices which define the finite-length
Hamiltonians even for the lengths where the wrapping
corrections appear.
Preliminaries.—In this section, we summarize the def-

inition of the long-range spin chain following Refs. [3,15]
and specify our goals.
An integrable long-range spin chain has a tower of

coupling constant λ-dependent commuting chargesQrðλÞ≡
Qr [16] which have the following series expansions:

Qr ¼ Qð0Þ
r þ

X∞
j¼1

λjQðjÞ
r ; ð1Þ
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where r ≥ 2, and the λ-independent operators QðlÞ
r are sums

of local operators with range rþ l:

QðlÞ
r ¼

X∞
j¼−∞

qr;lj ¼
X∞
j¼−∞

qr;lj;jþ1;…;jþrþl−1; ð2Þ

where the local densities qr;lj ≡ qr;lj;jþ1;…;jþrþl−1 act on the
sites j; jþ 1;…; jþ rþ l − 1. The Hamiltonian is the
charge Q2.
It turns out that, for a fixed nearest-neighbor model

Qkðλ ¼ 0Þ, a large class of integrable deformations exists.
The moduli space is given by four sets of parameters: αrðλÞ,
βr;sðλÞ, γr;sðλÞ, and ϵkðλÞ. The last two sets are unphysical
parameters, and they correspond to the linear combinations
of the charges Qr →

P
γr;sðλÞQs and the similarity trans-

formations

Qr → eXQre−X ; X ¼
X∞
j¼−∞

X
k

ϵkðλÞXk
j; ð3Þ

where Xk
j ≡ Xk

j;…;jþlk−1’s are local operators with range lk.
The remaining parameters are the physical ones. The αr and
βr;s parameters appear in the rapidity map and the scattering
phase [15].

It is clear that the operators QðlÞ
k can also be defined

on a finite length J for J ≥ lþ k. More concretely, the
Hamiltonian H on size J is defined up to order λJ−2

(asymptotic region). Our goal is to find an integrability-
preserving method which defines the finite-volume version
of the asymptotic Hamiltonians even for higher orders than
λJ−2 (wrapping region).
Medium range to long range.—In this section, we

generalize the construction of Ref. [14] (the basics
appeared first in Ref. [17]) to obtain transfer matrices
for perturbative long-range spin chains [3]. In Ref. [14], an
algebraic framework was introduced for integrable spin
chains with the interaction range lþ 2, which is defined by
the Hamiltonian

HðlÞ ¼
XJ
j¼1

hj;jþ1;…;jþlþ1 ¼
X
j

hðlÞj ; ð4Þ

where hðlÞj is the Hamiltonian density which acts on the
sites j; jþ 1;…; jþ lþ 1. We use a periodic boundary
condition. The construction of Ref. [14] is based on the
existence of the Lax and the R operators:

ĽðlÞ
j ðuÞ ¼ ĽðlÞ

j;jþ1;…;jþlþ1ðuÞ ¼ 1þ uhðlÞj þOðu2Þ; ð5Þ

ŘðlÞ
j ðu; vÞ ¼ ŘðlÞ

j;jþ1;…;jþ2lþ1ðu; vÞ; ð6Þ

which satisfy the RLL relation

ŘðlÞ
2 ðu; vÞĽðlÞ

1 ðuÞĽðlÞ
lþ2ðvÞ ¼ ĽðlÞ

1 ðvÞĽðlÞ
lþ2ðuÞŘðlÞ

1 ðu; vÞ:
ð7Þ

In this Letter, we choose to write these operators in the
“checked” form (the R matrix is multiplied by a permu-
tation), which might be less familiar to some readers [18],
although it has the advantage that the Lax operator has
a simpler expansion in the spectral parameter [Eq. (5)]. In
the alternative “unchecked” convention, the quantum and
auxiliary spaces are separated. Figure 1 shows graphical
presentations of Lax operators and RLL relations, and the
colored legs denote the auxiliary spaces of the “unchecked”
convention.
The consequence the RLL relation is that the transfer

matrix

ŤðlÞðuÞ ¼ cTrJ;lþ1

�
ĽðlÞ
J ðuÞ…ĽðlÞ

1 ðuÞ
�

ð8Þ

defines commuting quantities: ½ŤðlÞðuÞ; ŤðlÞðvÞ� ¼ 0 [18].
In Eq. (8), we define the twisted trace operator cTrJ;l, which
acts on an operator X as

cTrJ;lðXÞ ¼ TrJþ1;…;JþlðXPl;JþlPl−1;Jþl−1…P1;Jþ1Þ;
ð9Þ

FIG. 1. Graphical illustration of the Lax operator, RLL relation, and transfer matrix for l ¼ 2. The left graph shows the Lax operator

Ľð2Þ
1 ðvÞ ¼ Ľð2Þ

1;2;3;4ðvÞ. In the middle, we can see the RLL relation, where the red box is the R matrix Řð2Þ
1 ðu; vÞ ¼ Řð2Þ

1;2;3;4;5;6ðu; vÞ. The
right graph shows the transfer matrix for J ¼ 6, where the dots on the incoming and outgoing legs denote the summations for the
auxiliary spaces. The green and yellow lines mark the auxiliary spaces.
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where Pj;k is the permutation operator and TrJþ1;…;Jþl is
the usual trace on the sites J þ 1;…; J þ l. The transfer
matrix generates the local conserved charges

QðlÞ
kþ1 ¼

∂
k

∂uk
log ŤðlÞðuÞ

����
u¼0

: ð10Þ

The interaction range of QðlÞ
k is ðk − 1Þlþ k, and

HðlÞ ¼ QðlÞ
2 .

Let us turn to the long-range spin chains. At first, we
have to introduce the coupling constant λ-dependent

truncated operators ĽðlÞ
1 ðu;λÞ≡ ĽðlÞ

1 ðuÞ and ŘðlÞ
1 ðu; v; λÞ≡

ŘðlÞ
1 ðu; vÞ with range lþ 2 and 2lþ 2 as

ĽðlÞ
1 ðuÞ ¼ Ľð0Þ

1 ðuÞ þ
Xl
j¼1

λjĽðjÞ
1 ðuÞ; ð11Þ

ŘðlÞ
1 ðu; vÞ ¼ Řðl;0Þ

1 ðu; vÞ þ
Xl
j¼1

λjŘðl;jÞ
1 ðu; vÞ; ð12Þ

which satisfy the RLL relation up to order Oðλlþ1Þ:

ŘðlÞ
2 ĽðlÞ

1 ðuÞĽðlÞ
lþ2ðvÞ ¼ ĽðlÞ

1 ðvÞĽðlÞ
lþ2ðuÞŘðlÞ

1 þOðλlþ1Þ;
ð13Þ

where we use the shorthand notation ŘðlÞ
j ≔ ŘðlÞ

j ðu; vÞ.
We also require that

ĽðlÞ
1 ðuÞ ¼ 1þ uhðlÞ1 þOðu2Þ; hðlÞ1 ¼

Xl
j¼0

λjhðjÞ1 ; ð14Þ

where hðjÞ1 are λ- and u-independent operators with inter-
action range jþ 2.
At first sight, we might think that the truncated RLL

relation [Eq. (13)] and the matrices Řðl;jÞ
1 are completely

independent for every order l, but this is not true. It turns
out that Eq. (13) up to order OðλlÞ is equivalent with the
truncated RLL relation for l − 1. We can show that

ŘðlÞ
1 þOðλlÞ ¼ Ľðl−1Þ

lþ1 ðuÞŘðl−1Þ
1 J̌ ðl−1Þ

lþ1 ðvÞ; ð15Þ

where we define the perturbative inverse J̌ ðl−1Þ
1 ðuÞ as

J̌ ðl−1Þ
1 ðuÞĽðl−1Þ

1 ðuÞ ¼ 1þOðλlÞ [18].
The consequence of Eq. (15) is that the matrices Řðl;jÞ

1

are determined by Řðl−1;jÞ
1 for j ¼ 1;…l − 1; therefore, the

full truncated R matrix ŘðlÞ
1 is completely determined by

the matrices Řðj;jÞ
1 for j ¼ 1;…;l. By fixing the leading-

order Ľð0Þ
1;2; Ř

ð0;0Þ
1;2 to already known L and R matrices of a

nearest-neighbor interacting model, we can calculate the

matrices ĽðlÞ
1 ðuÞ, Řðl;lÞ

1 ðu; vÞ order by order from the
highest order λl of the truncated RLL relation [Eq. (13)].
As in the medium-range case, the transfer matrix

Ť ðlÞðuÞ ¼ cTrJ;lþ1

�
ĽðlÞ
J ðuÞ…ĽðlÞ

1 ðuÞ
�
þOðλlþ1Þ ð16Þ

defines commuting quantities up to order λlþ1:
½Ť ðlÞðuÞ; Ť ðlÞðvÞ� ¼ Oðλlþ1Þ. The transfer matrix gene-
rates the conserved charges up to order Oðλlþ1Þ

QðlÞ
kþ1 ¼

∂
k

∂uk
log Ť ðlÞðuÞ

����
u¼0

þOðλlþ1Þ; ð17Þ

where

QðlÞ
k ¼ Qð0Þ

k þ
Xl
j¼1

λjQðjÞ
k ðuÞ þOðλlþ1Þ: ð18Þ

It turns out that the charge QðlÞ
k has the interaction

range lþ k.
Since the Lax operators have the property in Eq. (14), the

Hamiltonian reads as

QðlÞ
2 ¼

XJ
j¼1

cTrJ;lþ1

�
hðlÞj

�
þOðλlþ1Þ: ð19Þ

Since hðlÞj ¼ Pl
k¼0 λ

khðkÞj , we obtain that

QðlÞ
2 ¼

XJ
j¼1

cTrJ;lþ1

�
hðlÞj

�
: ð20Þ

For the asymptotic region (i.e., J > lþ 1), we have the

identity cTrJ;lþ1ðhðlÞ1 Þ ¼ hðlÞ1 ; therefore, this charge has the

usual form QðlÞ
2 ¼ P

J
j¼1 h

ðlÞ
j .

Above, we have shown that the solutions of the RLL
relations [Eq. (13)] define long-range charges [Eq. (1)]
in the asymptotic limit. An important question is whether
the reverse statement is also true: i.e., do there exist
Lax operators for every integrable long-range charge Q2?
At this point, we do not know the answer. However, I
investigated the long-range glðNÞ spin chains of Ref. [3] up
to orderOðλ3Þ. After fixing the unphysical parameters γðλÞ,
ϵðλÞ, I found the matrices Ľð2Þ

1 ðuÞ which give the Qð2Þ
2

values for every set of physical parameters αðλÞ, βðλÞ [18].
Long-range spin chains at the wrapping region.—The

main advantage of the algebraic construction of the
previous section is that the transfer matrix is well defined
and satisfies ½Ť ðlÞðuÞ; Ť ðlÞðvÞ� ¼ Oðλlþ1Þ [20] even for
J < lþ 2—i.e., the wrapping region. So far, it has not
been clear how to define the Hamiltonian in the wrapping

PHYSICAL REVIEW LETTERS 129, 270201 (2022)

270201-3



region in an integrability-preserving way, but our transfer
matrix gives a recipe. We emphasis that the Lax operator
[Eq. (11)] is an asymptotic, density-like quantity (since it is
defined on an infinite chain and contains the asymptotic
Hamiltonian density); therefore, it describes the elementary
physical interaction. The transfer matrix shows a consistent
possibility how to define this interaction for finite sizes in a
translation-invariant and integrability-preserving way.
To obtain the integrable Hamiltonian for the wrapping

region (J ≤ lþ 1), we only have to use the definition in
Eq. (17). We can repeat the previous calculation up to

Eq. (20); i.e., the Hamiltonian reads as QðlÞ
2 ¼ P

J
j¼1 h̃

ðJ;lÞ
j ,

where we introduce a “wrapped” Hamiltonian density
(see Fig. 2)

h̃ðJ;lÞ1 ≡ h̃ðJ;lÞ12…J ≔ cTrJ;lþ2−J

�
hðlÞ1

�
; ð21Þ

and the periodic boundary condition is prescribed—i.e.,

h̃ðJ;lÞj ¼ h̃ðJ;lÞj;jþ1;…;J;1;2;…j−1. We see that the twisted trace
acts as an identity for the asymptotic region, but for the
wrapping region it defines a new operator which “’fits”
with the length of the chain.
Let us summarize what we have learned from this

analysis. Let us take an asymptotic integrable long-range
Hamiltonian

H∞ ¼
X∞
j¼−∞

h∞j ¼
X∞
j¼−∞

X∞
l¼0

X ðlÞ
j ; ð22Þ

where X ðlÞ
j ≡ X ðlÞ

j;…;jþlþ1 is a coupling-constant-dependent
operator with interaction range lþ 2. We see that our
method defines a unique integrability-preserving
Hamiltonian for every finite length J as

HJ ¼
XJ
j¼1

X∞
l¼0

X̃ ðJ;lÞ
j ;

X̃ ðJ;lÞ
1 ¼

(
X ðlÞ

1 ; lþ 2 ≤ J;cTrJ;lþ2−JðX ðlÞ
1 Þ; lþ 2 > J:

ð23Þ

Inozemtsev’s spin chain.—In this section, we demon-
strate that our finite-volume Hamiltonian is consistent
with a naive physical argument. Let us take a long-range
interaction and assume that we already know its manifes-
tation for every length J; i.e., for every length J we have the
Hamiltonians HJ which correspond to the same physical
interaction. Since we know the Hamiltonians for every
length, we can obtain the asymptotic model by the limit

H∞ ¼ lim
J→∞

HJ: ð24Þ

A natural requirement is that our procedure in Eq. (23)
should return to the original models HJ.
In the following, we validate this requirement on

Inozemtsev’s spin chain [21], for which the finite-volume
Hamiltonian reads as

HJ ¼
X

1≤j;k≤J

�
℘ðk − jÞ þ 2

ω
ζ
�ω
2

��
Pj;k; ð25Þ

where ℘ðzÞ, ζðzÞ are the Weierstrass functions defined on
the torus C=ZJ þ Zω, ω ¼ iðπ=κÞ, and the local Hilbert
spaces are CN . The J is length of the spin chain, and κ ∈ R
is the coupling. In the asymptotic limit, we obtain the
hyperbolic Inozemtsev spin chain [21]:

H∞ ¼
X

−∞<j<k<∞
Vðk − jÞPj;k; VðjÞ ¼

�
κ

sinhðjκÞ
�

2

:

ð26Þ

After a renormalization of the coupling constant κðλÞ, this
Hamiltonian is compatible with the perturbative long-range
description [22]. Let us rewrite the Hamiltonian as

H∞ ¼
X

−∞<j<∞
h∞j ¼

X∞
l¼0

X
−∞<j<∞

X ðlÞ
j ;

X ðlÞ
1 ¼ Vðlþ 1ÞP1;lþ2: ð27Þ

Now, let us apply Eq. (23) on X ðlÞ
1 . At first, let us wrap the

permutations

P̃1;k ¼
�
N; k≡ 1 mod J

P1;kJ ; k≡ 2;…; J mod J;
ð28Þ

where 1 < kJ ≤ J and kJ ≡ k mod J. Now, we can wrap

the full h∞1 ¼ P∞
l¼0X

ðlÞ
1 as

hJ1 ≔
X∞
l¼0

X̃ ðJ;lÞ
1 ¼

X
1<k≤J

P1;k

X
0≤l<∞

Vðkþ lJ − 1Þ þ c;

ð29Þ

1 2 3 4

1 2 34

1 2 3 4 5 6 7

1 2 3 4 5 6 7

FIG. 2. To the left is a graph for the seven-site operator

hð5Þ1 ¼ h1;2;…;7. On the right, we can see the wrapped operator

h̃ð5Þ1 for J ¼ 4. The contracted dots denote the summations—e.g.,
we have to trace out the first incoming and the fifth outgoing legs
of the operator h1;2;…;7.
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where c ¼ N
P

1≤l<∞ VðlJÞ. The full finite-volume
Hamiltonian is

HJ ¼
X
1≤j≤J

hJj ¼
X

1≤j<k≤J
Pj;k

X
−∞<l<∞

Vðk − jþ lJÞ þ Jc:

ð30Þ

The infinite sum can be written in the following closed form
[Eq. (23.8.3) in Ref. [23] ]:X

−∞<l<∞
Vðkþ lJÞ ¼ ℘ðkÞ þ 2

ω
ζ
�ω
2

�
: ð31Þ

Substituting back and dropping the irrelevant identity
operator, we simply obtain the original Inozemtsev
Hamiltonian [Eq. (25)]. We can see that our wrapping
method gives the finite-volume Inozemtsev spin chain from
the infinite-volume hyperbolic Inozemtsev spin chain, which
is an expectation for a consistent wrapping procedure.
Wrapping corrections in AdS=CFT.—In this section, we

summarize some properties of the wrapping corrections in
the planar N ¼ 4 super Yang-Mills theory (SYM). We
show that our finite-volume Hamiltonians are compatible
with these requirements.
Argument 1: On the string theory side (1þ 1-

dimensional field theory description), we know that the
asymptotic data (dispersion relation and scattering matrix)
uniquely define the wrapping corrections. This fact is
in agreement with our method, which uniquely defines
finite-size Hamiltonians [Eq. (23)] for a given asymptotic
Hamiltonian [Eq. (22)].
Argument 2: In the dilatation operator of the N ¼ 4

SYM, there are unfixed parameters coming from the free
choice of the renormalization scheme [24,25]. These are
unphysical parameters which disappear from the spectrum.
On the asymptotic level, these parameters correspond to
ϵkðλÞ—i.e., the global rotations in Eq. (3); therefore, it is clear
that they have no effect on the spectrum. The disappearance
on finite volume is a nontrivial condition for the physical
finite-size Hamiltonians. It turns out that the spectrum of our
finite-volume Hamiltonians is free from ϵkðλÞ as well [18].
Argument 3: In the asymptotic limit, the spectrum of

the closed sectors is completely independent from the full
theory. To be more concrete, let us consider three asymp-
totic Hamiltonians H∞

N¼4
, H∞

SUðNÞ, and H∞
SUð2Þ, which

correspond to the N ¼ 4 SYM, one of the SUðNÞ and
the SUð2Þ long-range models for which the restriction to
the SUð2Þ sector is the same—i.e.,

H∞
N¼4

���
SUð2Þ

¼ H∞
SUðNÞ

���
SUð2Þ

¼ H∞
SUð2Þ:

Clearly, the spectrum of a closed sector does not know
about the full model in which it is embedded. However,
we know that for proper wrapping corrections, we have to

consider contributions from the full spectrum (for Lüsher
corrections, we have to sum for all virtual particles of the
mirror model [11]); therefore,

HJ
N¼4

���
SUð2Þ

≠ HJ
SUð2Þ:

This is an important requirement for the definition of the
finite-size long-range Hamiltonians. Let us take our def-
inition in Eq. (23). We can see that the wrapped operator

X̃ ðJ;lÞ
1 contains a sum for a tensor product of the full local

Hilbert spaces. Therefore, these wrapped operators, even in
the closed subsectors, explicitly depend on the full asymp-
totic Hamiltonian; therefore, our definition satisfies

HJ
SUðNÞ

���
SUð2Þ

≠ HJ
SUð2Þ:

Argument 4: We also know that, in the wrapping
corrections, extra transcendental numbers appear. For
example, let us consider the Konishi operator [a length-4
operator in the SUð2Þ sector]. At four loops, the asymptotic
dilatation operator of the SUð2Þ sector contains only one
transcendental number, ζð3Þ [24,25]. However, the length-4
Hamiltonian at four loops [24,25] contains an extra ζð5Þ
compared to the asymptotic Hamiltonian. We already
mentioned that our finite-volume Hamiltonian includes a
sum for the full one-site Hilbert space in the wrapping
region; therefore, extra transcendental numbers can appear
in the finite-size Hamiltonians if the one-site Hilbert space
is infinite-dimensional, which is the case for N ¼ 4 SYM.
We note that transcendental numbers appear in the spec-
trum of higher chargers of nearest-neighbor spin chains
with infinite-dimensional local Hilbert spaces [26].
Conclusions.—In this Letter, we generalized the algebraic

framework of medium-range spin chains [14] to perturbative
long-range spin chains [3]. Using this method, we were able
to define finite-volume Hamiltonians [Eq. (23)] for every
asymptotic long-range model. We demonstrated that this
definition is physically relevant by showing that our defi-
nition is in agreement with several physical requirements
coming from Inozemtsev’s spin chain and AdS=CFT.
We saw that our wrapping procedure [Eq. (23)] leads to

wrapping corrections with similar properties to what we
expect from the N ¼ 4 SYM. This is an important result,
because previously, the finite-size corrections under simpler
conditions could be studied using integrable field theories.
From now on, the wrapping corrections can be also tested on
spin chains, which can be simpler in many ways.
I believe that this result could open up a number of new

research directions. One possible direction is to generalize
the integrable boundary states [27,28] for long-range spin
chains as well. Combining this with the method of this
Letter, we could investigate the wrapping corrections of
the overlaps between boundary and Bethe states which
describe certain one- and three-point functions in N ¼ 4
SYM [29–35] and ABJM theories [36,37].
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It would be interesting to apply the algebraic Bethe
ansatz, although it is not clear how this should be done due
to the increasing number of auxiliary spaces. However,
there are other ways to diagonalize the transfer matrices—
e.g., functional techniques [38] (quantum spectral curve
[39] for simpler long-range models?) and the separation of
variables [40–42].
Another interesting direction would be to give some

nonperturbative definitions of the quantities appearing in
this Letter (Lax operators, transfer matrix), the derivation
of the Yangian symmetry [43] from our framework, and
connection for the TT̄ deformations of spin chains [44].
Finally, we need to address a major shortcoming of our

method. The spin chain which appears in the perturbation
theory of N ¼ 4 SYM is dynamical, which means that the
Hamiltonian can change the length of the spin chain. Our
method in its present form is not suitable for describing
such models. In the future, we plan to extend the process to
dynamic spin chains, but in the meantime, the nondynam-
ical Hamiltonians like Eq. (23) can serve as good toy
models of wrapping effects.
It is worth mentioning that parallel research has also

been started on the topic of long-range spin chains [45].
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