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We study the critical features of the order parameter’s fluctuations near the threshold of mixed-order
phase transitions in randomly interdependent spatial networks. Remarkably, we find that although the
structure of the order parameter is not scale invariant, its fluctuations are fractal up to a well-defined
correlation length ξ0 that diverges when approaching the mixed-order transition threshold. We characterize
the self-similar nature of these critical fluctuations through their effective fractal dimension d0f ¼ 3d=4, and

correlation length exponent ν0 ¼ 2=d, where d is the dimension of the system. By analyzing percolation
and magnetization, we demonstrate that d0f and ν0 are the same for both, i.e., independent of the symmetry

of the process for any d of the underlying networks.
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Introduction.—Critical phenomena are fundamental fea-
tures of phase transitions, showing universal behaviors that
emerge in the vicinity of the critical point [1,2]. In second-
order transitions, these phenomena are typically reflected in
the scaling relations between critical exponents [3,4] as
well as in the fractal geometry of the order parameter’s
structure at criticality [5,6]. In first-order transitions,
instead, the lack of a diverging correlation length at the
transition threshold leaves the structure of the order
parameter to be compact [7], i.e., not scale invariant and
with the same dimension of the embedding space, further
preventing the emergence of scaling laws [8]. Hybrid or
mixed-order transitions [9,10] lie in between these two
classes, displaying both a discontinuous order parameter
with a compact structure and critical scaling at the
transition point (see Fig. 1). Because of their mixed nature
and their appearance in a broad variety of models [11–14]
and real-world systems [15–18], hybrid transitions have
attracted much attention, both from a theoretical and an
experimental perspective, offering the twofold opportunity
of discovering novel universal features and to analyze
catastrophic shifts.
In this regard, interdependent networks serve as suitable

venues [19,20] for the theoretical and experimental study of
mixed-order transitions. They, in fact, typically undergo
hybrid structural and/or functional transitions due to
cascading failures [21], whose properties can depend on
the topological or dynamical features of the interacting
systems [22] as well as on the range and fraction of
dependency links [23–25]. Random and spatial inter-
dependent networks, in particular, host mixed-order per-
colation transitions when dependency couplings are
random [26,27], serving then as tailored models to analyze
the critical properties of these transitions in any spatial
dimension.

In this Letter, we study the critical fluctuations of the
order parameter O at the mixed-order transition of ran-
domly interdependent lattices. We find that, although O is
compact at the threshold, its fluctuations are self-similar
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FIG. 1. Fluctuations at a mixed-order transition. (a) Illustration
of the model of randomly interdependent d-dimensional net-
works (here d ¼ 2) studied in this Letter, featuring short-range
connectivity links (gray links) and long-range dependency links
(orange couplings). (b) Each realization of a hybrid transition [see
(c) for a close-up of the bounded region] has its own critical
threshold ac and critical massOc ≡OðacÞ—related to each other
via the scaling law [9] OðaÞ ∼Oc þ ja − acj1=2—whose distri-
butions follow a certain profile, as shown in (d) for PðacÞ and in
(e) for PðOcÞ. (f) Illustration of the fluctuating values of the
critical mass, their mean value hOci, and their statistical vari-
ation σ2ðOcÞ.
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and are characterized by an effective fractal dimension d0f
in length scales up to a correlation length, ξ0, which
diverges close to the mixed-order transition threshold ac as

ξ0 ∼ ja − acj−ν0 ; ν0 ¼ 2=d; ð1Þ

where a is a control parameter. We demonstrate this in both
interdependent percolation and interdependent magnetiza-
tion processes in d-dimensional lattices, where we show
that (1) the exponents ν0 and d0f are independent of the
underlying process, (2) their values are valid for any
dimension d ≥ 2 (i.e., the upper and lower critical dimen-
sion is dc ¼ 2) and any number of interdependent layers
M ≥ 2, and (3) they satisfy hyperscaling [28]. Building on
the above, we put forward the hypothesis that fractal
fluctuations are a universal property of mixed-order tran-
sitions and we support this claim by developing and testing
a unifying scaling theory for the order parameter’s fluctua-
tions in the vicinity of the critical point.
Model and main results.—To present our model, let us

consider M ¼ 2 randomly interdependent d-dimensional
lattices of size N ¼ Ld. We insert the dependency links
between the layers by randomly pairing the functional states
of the two lattices’ sites [29], thus generating a multilayer
system with short-range connectivity and long-range
dependency [Fig. 1(a)]. We consider the networks to be
fully interdependent, i.e., each node in one layer depends on
the state (in what follows, percolation andmagnetization) of
a randomly chosen node in the other layer. By collecting
a large sample [see Table 1 in Supplemental Material
(SM) [30] ] of independent realizations of the hybrid phase
transitions reported in both models [Figs. 1(b) and 1(c)],
we study the fluctuations of their critical thresholds
σ2ðacÞ ¼ ha2ci − haci2, and of their order parameter’s criti-
cal mass σ2ðOcÞ ¼ hO2

ci − hOci2. Both quantities are
obtained, respectively, from the distributions PðacÞ
[Fig. 1(d)] and PðOcÞ [Fig. 1(e)].

Following a method introduced by Levinshtein et al. [31]
and later discussed by Stauffer [4] (see also [3]), we
determine the correlation length critical exponent intro-
duced in Eq. (1) by finite-size scaling as

σðacÞ ∼ L−1=ν0 ; ν0 ¼ 2=d: ð2Þ

A fundamental question then arises: what is the physical
role played by the diverging correlation length of fluctua-
tions, Eq. (1), at a mixed-order phase transition?
In analogy with continuous transitions, where the order

parameter (near criticality) is fractal below the correlation
length, we show in what follows that at mixed-order
transitions the critical fluctuations of the order parameter’s
mass [Fig. 1(f)] themselves are self-similar up to ξ0, with a
well-defined fractal dimension d0f given by

σðOcÞ ∼ Ld0f ; d0f ¼ 3d=4; ð3Þ

which we support by extensive simulations and hyper-
scaling arguments (see Discussion). In light of the above,
we advance a scaling theory for the fluctuations of the order
parameters’ mass close to criticality as follows. At short
scales, L < ξ0, σðOÞ follows Eq. (3), while at long scales,
L > ξ0, the fluctuations are noncritical and satisfy the
scaling law σðOÞ ∼ ffiffiffiffi

N
p ¼ Ld=2 [see Fig. S1 (SM) [30] ].

Combining the above observation, we obtain the scaling
function

σðOÞ
Ld=2ξ0d=4

¼ GðL=ξ0Þ; ð4Þ

where GðxÞ is constant for x ≫ 1 and GðxÞ ∼ xd=4 for
x ≪ 1. Remarkably, we find that Eq. (4) is valid for both
randomly interdependent percolation (Figs. 2 and 3) and
magnetization processes (Fig. 4), both on spatial and on
random networks (SM [30], Fig. S5), and it is satisfied for

FIG. 2. Correlation length exponents of fluctuations length. (a) Scaling of σðpcÞ with L, for all studied dimensions (d ¼ 2–8). We find
excellent agreement between simulations and the scaling relation in Eq. (2). Inset: the dependence of ν0 on the dimension d of the
underlying lattices follows the relation ν0 ¼ 2=d. (b) The distribution of pc (here, d ¼ 2) fits a skewed Gaussian and follow the scaling in
Eq. (5) (black line) with γ1 ≃ 0.465 and κ ≃ 0.315.
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any dimension d ≥ 2 and any number of layers M ≥ 2
(SM [30], Fig. S6), hinting at its universal nature.
Interdependent percolation.—To percolate our system of

randomly interdependent lattices, we remove at random a
fraction 1 − p of the nodes belonging to one layer and let
the cascading of failures to propagate back and forth
between the layers. In finite systems, each realization is
characterized by a distinct percolation threshold pc and a
critical mass of the mutual giant connected component
(MGCC), Mc ¼ Sc∞Ld, where Sc∞ ≡ S∞ðpcÞ is the relative
fraction of nodes within the MGCC at criticality [Fig. 1(b)].
We find that their best-fitting distribution is a skewed
Gaussian [Figs. 1(d) and 1(e); and SM [30], Fig. S4] with
nonzero skewness [32] γ1 ¼ hx3i and kurtosis κ ¼ hx4i
[see Figs. 2(b) and 3(b)]. Here, x ¼ ðy − hyiÞ=σðyÞ is the
normalized parameter of the distribution and y is the
observable of interest (pc and Mc in our case). The normal
form of the two distributions indicate that the thermo-
dynamic exponents β0; γ0; δ0;… characterizing the critical
fluctuations of the order parameter can be cast within the
standard ϕ4-field theory [33] and, as such, they belong to
the mean-field Ising universality class (see Discussions).
Exponents and scaling relations related to the system’s
dimensionality d, such as ν0 or d0f, on the other hand, are
more delicate since they can be strongly influenced by the
presence of dangerous irrelevant variables altering the
singular part of the system’s free energy [34]. To determine
ν0 and d0f at hybrid percolation transitions in randomly
interdependent lattices, we follow the method proposed in
the above and analyze the finite-size scaling of σ2ðpcÞ and
σ2ðMcÞ. As shown in Fig. 2(a), the scaling of the width of
the distribution PðpcÞ results in a correlation length
exponent ν0, whose value explicitly depends on the net-
work’s dimension and nicely agrees with the relation
ν0 ¼ 2=d [Fig. 2(a), inset]. To further corroborate the
expression ν0 ¼ 2=d, we perform a data collapse of the
distributions PðpcÞ obtained for different system sizes
which, in light of Eq. (1), can be rescaled [3] as

PðpcÞL−1=ν0 ∼ F ½ðpc − hpciÞ=L−1=ν0 �; ð5Þ

whereF ðxÞ fits the profile of a skewed Gaussian. As shown
in Fig. 2(b) for d ¼ 2, the data gathered over different
system sizes nicely collapse.
As anticipated in the above, the diverging correlation

length ξ0 manifests physically the self-similar character of
critical fluctuations of the order parameters’ mass Mc
at the hybrid percolation threshold. Indeed, as displayed
in Fig. 3(a), the scaling advanced in Eq. (3) is nicely
corroborated by means of extensive simulations and the
fractal fluctuation dimension d0f ¼ 3d=4 is observed over
several decades in randomly interdependent lattices of
dimensions ranging from d ¼ 2 up to d ¼ 7. Notice that
interdependent chains do not undergo any phase transitions
due to the absence of ordering already in the isolated d ¼ 1
layers themselves. The inset of Fig. 3(a), in particular,
highlights the validity of the expression d0f ¼ 3d=4
which we corroborate by performing a data collapse of
the distribution PðMcÞ [see Fig. 3(b) and details in caption]
and further justify by means of hyperscaling argu-
ments in the Discussion. An interesting implication of the
above results is that one of the classical properties of
continuous phase transitions, i.e., the ratio hMci=σðMcÞ
is independent of the system size [35], breaks down at
mixed-order transitions. In fact, since the MGCC itself is
compact at criticality, then hMci ∼ Ld and the ratio scales
with the fluctuations codimension Δ0 ¼ d − d0f ¼ d=4

as hMci=σðMcÞ ∼ Ld=4.
To complete the picture, we analyze the structure of

fluctuations near the mixed-order percolation threshold. In
light of Eq. (4), we expect that when taking a small
displacement Δp ¼ p − pc from the abrupt threshold,
the critical fluctuations of the MGCC’s mass will be fractal
with dimension d0f up to ξ

0 and noncritical (i.e., white noise,
see Fig. S1 in SM [30]) otherwise. We support this picture
in Fig. 3(c) with simulations in d ¼ 2 and d ¼ 3 [Fig. 3(c),

FIG. 3. Fractal fluctuations. (a) Simulations of the scaling of σðMcÞ with L show excellent agreement with Eq. (3) where d0f ¼ 3d=4
(see inset). (b) Data collapse of PðMcÞ for d ¼ 2 under the scaling PðMcÞLd0f ∼ F ½ðMc − hMciÞ=Ld0f � (black line), where F is a skewed
Gaussian as in Eq. (5), now with γ1 ≃ −0.607 and κ ≃ 0.449. (c) Close to the hybrid percolation threshold, the MGCC’s fluctuations are
fractal up to length scales (represented by L) below ξ0 [Eq. (1)] and nonfractal otherwise, as described by the universal scaling function
in Eq. (4). Results are shown for d ¼ 2 and for d ¼ 3 in the inset.
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inset] lattices. By rescaling the critical width Δp via
Eq. (1), the crossover between the (critical) fractal fluctua-
tions regime and the (noncritical) Gaussian regime is nicely
seen. We further verify the presence of this crossover at the
hybrid percolation transition in interdependent random
graphs [SM [30], Fig. S5(a)] and in M ¼ 3 interdependent
lattices [SM [30], Figs. S6(a) and S6(b)].
Interdependent magnetization.—To scrutinize the uni-

versality of the fractal fluctuations phenomenon at mixed-
order transitions, we consider a model of interdependent
Ising-spin networks where dependency couplings between
layers are realized as thermal interactions [36]. We consider
here the particular case of d-dimensional lattices modeled
as in Fig. 1(a), where each node is endowed with an Ising
spin σi ¼ �1. Dependency couplings between the layers
are inserted as local thermal feedback on the level of the
flipping probability of spins (see Fig. S2 in SM [30] and
discussions therein for details), which intertwine adaptively
the stochastic (Metropolis) dynamics of the two layers. In
randomly interdependent spins lattices, the average mag-
netization M ¼ P

ihσiiβ (where hð� � �Þiβ is a thermal
average) undergoes a spontaneous mixed-order ferromag-
netic-to-paramagnetic transition [Fig. 4(a)] at a finite
critical temperature Tc ≃ 1.25d [see Fig. 4(a), inset] and
for any dimension d ≥ 2, analogously to the abrupt
collapse of the MGCC at pc in interdependent percolation.

We perform an analysis analogous to the one put forward
in the above for interdependent percolation and determine
the fluctuation correlation length exponent ν0 and its fractal
dimension d0f, respectively, from the scaling of σðTcÞ and
of σðMcÞ. Figure 4(b) shows the finite-size scaling of
σðTcÞ, whose behavior nicely follows Eq. (2) with ν0 ¼ 2=d
[see Fig. 4(b), inset] and supports the existence of a
diverging correlation length, Eq. (1). Moving to the self-
similar properties, we display in Fig. 4(c) the scaling of
σðMcÞ and confirm the validity of the fractal fluctuation
dimension d0f ¼ 3d=4 [Fig. 4(c) inset] in agreement with
Eq. (3). Both our measurements of ν0 and of d0f are further
validated via their corresponding distributional collapse
[SM [30], Figs. S3(a), S3(b), and S4(b)]. To close the
picture, we show in Fig. 4(d) the behavior of critical
fluctuations near the mixed-order magnetization transition
in d ¼ 2. We find also here excellent agreement with the
scaling relation proposed in Eq. (4), supporting further
the universality of the crossover at hybrid transitions from
the fractal (L ≪ ξ0) to the nonfractal (L ≫ ξ0) fluctuation
regime. Finally, as with percolation, we support the
existence of fractal fluctuations also at the hybrid mag-
netization transition in interdependent random graphs [SM
[30], Fig. S5(b)] and in M ¼ 3 randomly interdependent
lattices [SM [30], Figs. S6(c) and S6(d)].

(a) (b)

(c) (d)

FIG. 4. Fractal fluctuations in interdependent magnetization. (a) Mixed-order transition in randomly interdependent Ising d-
dimensional lattices (here d ¼ 2, 3, 4) measured via the magnetic density M=N as a function of temperature T. Inset: the critical
temperature Tc scales linearly with the lattices’ dimension d. (b) Simulations of the scaling of σðTcÞ with L show excellent agreement
with Eq. (2) where ν0 ¼ 2=d as shown in the inset. (c) At criticality ξ0 diverges and the fluctuations of the MGCC are fractal in all length
scales and follow Eq. (3) with d0f ¼ 3d=4 as shown in the inset. (d) Fluctuations are fractal up to ξ0 [Eq. (1)] and nonfractal above it,
confirming the scaling in Eq. (4), here shown with d ¼ 2.
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Discussion.—In this Letter, we have unveiled the pres-
ence of self-similarity and of a diverging length scale,
Eq. (1), in the finite-size scaling of critical fluctuations at
mixed-order transitions. These critical phenomena are all
the more surprising as the order parameter at the transition
threshold is always compact, and they suggest that critical
fluctuations have a fractal geometry in some appropriate
metric space. We characterize these phenomena via an
effective fractal dimension d0f ¼ 3d=4 and a correlation
length exponent ν0 ¼ 2=d, which we verify numerically for
percolation and magnetization processes both at, Eqs. (2),
(3), and close to, Eq. (4), the transition’s threshold. Since
the fluctuations are normal-like distributed, a hyperscaling
hypothesis can be put forward to justify the exponents
ðν0; d0fÞ in terms of the thermodynamic ones β0 ¼ 1=2,
γ0 ¼ 1, etc., characterizing the mean-field Ising universality
class [37]. Indeed, one can readily verify that the hyper-
scaling relations dν0 ¼ 2β0 þ γ0 and d0f ¼ d − β0=ν0 are
identically satisfied. In this light, our results hold a
universal character and we expect the phenomenon of
fractal fluctuations to be experimentally observable in other
models undergoing mixed-order transitions [38], e.g., in
colloidal crystals [16], networks of active gels [15], or
interdependent superconductors [39].
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