
Activity-Suppressed Phase Separation

Fernando Caballero* and M. Cristina Marchetti
Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106

(Received 15 July 2022; accepted 1 December 2022; published 22 December 2022)

We use a continuum model to examine the effect of activity on a phase-separating mixture of an extensile
active nematic and a passive fluid. We highlight the distinct role of (i) previously considered interfacial
active stresses and (ii) bulk active stresses that couple to liquid crystalline degrees of freedom. Interfacial
active stresses can arrest phase separation, as previously demonstrated. Bulk extensile active stresses can
additionally strongly suppress phase separation by sustained self-stirring of the fluid, substantially reducing
the size of the coexistence region in the temperature-concentration plane relative to that of the passive
system. The phase-separated state is a dynamical emulsion of continuously splitting and merging droplets,
as suggested by recent experiments. Using scaling analysis and simulations, we identify various regimes for
the dependence of droplet size on activity. These results can provide a criterion for identifying the
mechanisms responsible for arresting phase separation in experiments.
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Liquid-liquid phase separation (LLPS) occurs ubiqui-
tously in biology and materials science. In this process, two
immiscible fluids demix from a homogeneous state into
two distinct liquids separated by soft interfaces. Recent
attention has focused on LLPS in active systems [1,2].
Persistent motility is known to drive phase separation in
systems in which the constituent particles have purely
repulsive interactions through a process known as motility-
induced phase separation (MIPS) [3–5]. This is in contrast
to equilibrium phase separation, which requires attractive
interactions and occurs when attraction overcomes ther-
mally driven entropic mixing. MIPS has been characterized
extensively, experimentally, and theoretically, resulting in a
detailed understanding of its underlying mechanisms [6],
phases [7,8], critical properties [9], and laboratory realiza-
tions [10,11].
Less studied is the effect of activity on the phase diagram

of fluid mixtures that do phase separate in equilibrium.
Very recent experiments on immiscible phase-separating
mixtures of active and passive fluids [12] have suggested
that activity may both arrest phase separation, i.e., stabilize
finite-size structures, preventing the system from reaching
bulk phase separation, and also suppress it by shifting the
critical temperature to lower values and reducing the region
of the phase diagram where the two fluids are demixed.
While binary mixtures of active and passive species have
been studied and modeled before in different contexts [13–
17], an understanding of this suppression is still missing.
Equilibrium liquid-liquid phase separation is well

described by a continuum theory in terms of a conserved
concentration field ϕðr; tÞ with an underlying free energy
quartic in ϕ coupled to a flow with velocity field v [18].
Activity has been introduced in equilibrium models
through the addition of time reversal symmetry breaking

terms to the currents that drive the dynamics of the
concentration field [19] and through interfacial stresses
that describe activity-induced self-shearing of the interface
[20,21]. It has been shown that these nonequilibrium
mechanisms can arrest phase separation and stabilize
finite-size droplets [21,22], but, as we see below, they
do not change the critical temperature of the passive phase-
separating mixture.
In this Letter, we examine the effect of activity on a

phase-separating mixture of a passive fluid and an active
nematic and show that in this system, activity not only
arrests phase separation, but can completely suppress it.
The suppression originates from the presence of liquid
crystalline degrees of freedom that generate bulk active
stresses not present in scalar models. It is known that such
active stresses destabilize the homogeneous nematic state
on all scales [23], resulting in active turbulent dynamics.
This yields a continuous local stirring that mixes the fluid
into a uniform state, shifting the critical point for phase
separation to lower temperatures and reducing the coex-
istence region in the temperature-concentration plane. A
similar suppression is known to occur in equilibrium LLPS
upon imposing a uniform external shear [24–27]. The same
effect is achieved here via local self-shearing demonstrating
that activity provides a new handle for controlling the LLPS
phase diagram.
Model.—We consider a phase-separating mixture of a

passive isotropic fluid and an active nematic [28]. Such a
system has recently been engineered by combining active
microtubule nematics with DNA-based condensates [12].
We work in 2D, although the analytical work is easily
generalized to 3D. The system is described by three conti-
nuum fields: a phase field ϕ ¼ hnA − nPi=hnA þ nPi that
represents the local composition of the fluid mixture, with
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nA;P the number density of active and passive parti-
cles, a flow velocity v, and the nematic order parameter
tensor Qij ¼ S=2ðninj − δij=2Þ, where S is the ampli-
tude and n the director, with jnj ¼ 1. The dynamics is
governed by

Dtϕ ¼ M∇2μ;

DtQij ¼ λDij þQikωkj − ωikQkj −
1

γ

δFQ

δQij
;

ρDtvi ¼ η∇2vi − ∂iPþ fi; ð1Þ

with Dt ¼ ∂t þ vi∂i. The field ϕ obeys Cahn-Hilliard
dynamics with a mobility M and a chemical potential μ ¼
ðδFϕ=δϕÞ obtained from a Landau-Ginzburg (LG) free
energy Fϕ ¼ 1

2

R
r ½aϕ2 þ ðb=2Þϕ4 þ κð∇ϕÞ2�. The param-

eter a represents the temperature of the passive system and
controls the equilibrium critical point ac located at ac ¼ 0

for ϕ0 ¼
R
r ϕðrÞ=A ¼ 0, with A the system area.

Considering states of uniform ϕðrÞ ¼ ϕ̄, for a > 0 the
free energy Fϕ has a single minimum at ϕ̄ ¼ 0 corre-
sponding to a uniform (mixed) state. For a < 0, the system
minimizes the free energy by demixing into two bulk
coexisting states with ϕ̄ ¼ �ϕþ ¼ � ffiffiffiffiffiffiffiffiffiffiffi

−a=b
p

. For conven-
ience, we also define ϕ̃ ¼ ð1þ ϕ=ϕþÞ=2 so that ϕ̃ ¼ 1

corresponds to the active nematic phase and ϕ̃ ¼ 0 to the
isotropic passive fluid.
The dynamics of the nematic order parameter is con-

trolled by coupling to flow through the symmetrized
rate of strain tensor Dij ¼ ð∂ivj þ ∂jviÞ=2, vorticity
ωij ¼ ð∂ivj − ∂jviÞ=2, and relaxation controlled by the
Landau–de Gennes free energy FQ given by

FQ ¼ 1

2

Z
r
½Tr½Q2�ðTr½Q2� − ϕ̃Þ þ Kð∂jQikÞ2�: ð2Þ

The coupling to ϕ̃ ensures that nematic order does not occur
in the passive region, where ϕ̃ ¼ 0.
The flow is governed by a Navier-Stokes equation, with

ρ the constant total density, η the shear viscosity, and P the
pressure, fixed by incompressibility ∇ · v ¼ 0. The force
density f has two contributions, f ¼ fϕ þ fQ. The capillary
force fϕ ¼ −ϕ∇μ [29] can be written as the divergence
of a deviatoric stress fϕi ¼ ∂jσ

ϕ
ij ¼ −κa∂j½ð∂iϕÞð∂jϕÞ −

δijð∇ϕÞ2=2� [30]. We allow for κa to be different from
the stiffness κ in the LG free energy to describe non-
equilibrium interfacial stresses akin to active modelH [20].
The sign of κa controls the nature of interfacial active
stresses, with κa > 0 and κa < 0 corresponding to stresses
that tend to stretch and contract the interface along its
length, respectively (see Fig. 1 in the Supplemental
Material [31]). As shown previously [20,21], κa > 0
stabilizes the interface, while κa < 0 results in an effective

negative interfacial tension and destabilizes it. The bulk
active force fQ is controlled by the liquid crystalline
degrees of freedom and is the gradient of the familiar
active stress fQi ¼ ∂jσ

a
ij ¼ ∂jðαϕ̃QijÞ [32]. The coupling to

ϕ̃ ensures that the active stress is nonzero only in the
nematic phase. The sign of α controls whether bulk active
stresses are contractile (α > 0) or extensile (α < 0). Related
models have been used before to describe coexisting
nematic and isotropic phases of active liquid crystals
[13–15,33], but the boundary of the coexistence region
has not been previously quantified.
Numerical results.—In equilibrium (κa ¼ κ and α ¼ 0),

our fluid mixture undergoes bulk phase separation for
a < 0. The binodal (coexistence) curve a ¼ −ϕ2

0 and the
spinodal curve a ¼ −3ϕ2

0 (we set b ¼ 1) are symmetric
inverted parabolas shown in Fig. 1 as solid and dashed
black lines, respectively. Below the spinodal parabola, an
initially uniform state is unstable to small density fluctua-
tions and phase separates through spinodal decomposition.
Between the binodal and spinodal lines, uniform states are
metastable, and phase separate through nucleation. Above
the binodal line, the uniform state is stable.
Interfacial active stresses alone (κa < 0 and α ¼ 0)

narrow the coexistence region, changing the coexistence
densities and arresting phase separation, but do not affect
the location of the critical point [20,31]. In the following,
we focus on the effect of bulk activity and assume

FIG. 1. Phase diagram in the ðϕ0; αÞ plane. The black lines are
the binodal (solid) and spinodal (dashed) curves for the mean
field theory in equilibrium. The numerical data for three values of
activity α clearly show the shift of the critical point and its
increase with activity. The lines through the data are parabolic fits
and the thick dots mark the critical point. The vertical line at
ϕ0 ¼ 0 highlights the shift of the critical point to values of ϕ0 that
correspond to more than 50% of passive fluid. The error bars are
the precision with which we can visually differentiate uniform
and phase-separated states.
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κa ¼ κ since the effect of κa < 0 has been discussed
elsewhere [20,21].
The situation is completely different in the presence of

extensile bulk active stresses (α < 0 and κa ¼ κ) that are
known to destabilize the uniform ordered state of extensile
active nematics for all α [23]. This instability is driven by
bend deformations that grow in time, leading to a dynami-
cal steady state of spatiotemporal chaotic flows known as
active turbulence [34]. To quantify the effect of the bulk
instability on the phase diagram of the mixture, we
integrate numerically Eqs. (1) (see Ref. [31] for details
on the numerics). We vary volume fraction ϕ0, reduced
temperature a, and activity α. The rest of the parameters are
as follows, unless specified otherwise: η ¼ 0.1, γ ¼ 1,
K ¼ 0.08, λ ¼ 1, M ¼ 0.1, b ¼ 1, κ ¼ κa ¼ 0.7.
We find that bulk extensile stresses not only arrest phase

separation, but considerably suppress it, by shifting the
critical point ac to a lower value a�cðα;ϕ0Þ < 0 and to
ϕ0 < 0. The area of the coexistence region in the ðϕ0; aÞ
plane is substantially reduced, as shown in Fig. 1. To
quantify this suppression, we examine the time evolution of
the width of the coexistence region ΔϕðaÞ ¼ ½maxðϕÞ −
minðϕÞ�=2 (Fig. 1). In the passive system, ΔϕðaÞ ¼ ϕþ ¼ffiffiffiffiffiffi
−a

p
with Δϕ ¼ 0 in the uniform state. The time evolution

of Δϕ is shown in the top frame of Fig. 2 for two values of
activity, both corresponding to a < 0. For a�c < a < 0, i.e.,
above the active critical temperature (a ¼ −0.2, blue
curve), Δϕ quickly evolves to zero as the initially phase-
separated state is mixed by active flows. For a < a�c
(a ¼ −1, red curve), the active fluid evolves toward

arrested phase separation. The boundaries of the coexist-
ence region shown in Fig. 1 are identified as the points
where Δϕ approaches a finite value at late times. We note
that this criterion does not distinguish between binodal and
spinodal lines.
The active critical point a�cðα;ϕ0Þ depends on activity

and volume fraction. It is shifted downward with increasing
activity, which increases the rate at which the mixture is
stirred by active energy injection. The parabolic fit to the
data in Fig. 1 shows that activity additionally shifts the
critical point to lower (negative) values of ϕ0, which
corresponds to mixtures with an excess fraction of active
versus passive component.
To determine a�cðα;ϕ0Þ, we first locate ϕc

0 through a
parabolic fit of the coexistence line, and then evaluate
Δϕða;ϕc

0Þ as a function of a. These curves are shown in the
Supplemental Material for several values of activity [31].
The critical point corresponds to Δϕða�c;ϕc

0Þ ¼ 0 and
decreases with increasing activity strength, as evident from
Fig. 1 (see also the inset of Fig. 3 in the Supplemental
Material [31]). Figure 3 shows a finite-size scaling of
Δϕða;ϕc

0Þ with system size that suggests a continuous
phase transition with a diverging dΔϕ=da at the critical
point. A system size of L ¼ 128 approximates well the
asymptotic behavior.
Interfacial dynamics and linear stability.—We show that

simple scaling arguments can be used to obtain the growth
laws of domains in the coexistence region. To estimate the
growth rate of droplets starting from a uniform state, we
assume that growth is controlled by a single length scale L

FIG. 2. Top: time evolution of the width Δϕ of the coexistence
region for a ¼ −0.2 (blue curve) and a ¼ −1.0 (red curve)
corresponding to states above and below the critical point a�c ≈
−0.3 of the active mixture, respectively. Here, jαj ¼ 0.8. Bottom:
snapshots of the simulations at times t ¼ 0, 3, 10, and 90 marked
by vertical lines in the plot. The color of the frame of the
snapshots matches the color of the corresponding Δϕ curves.

FIG. 3. Finite-size scaling of Δϕða;ϕc
0Þ for jαj ¼ 1.2. The

critical point ac is defined as the value of a where Δϕ ¼ 0. The
black line is the equilibrium mean field line of the passive system,
with ac ¼ 0. For active mixtures, ac is shifted to lower (negative)
values and approaches ac ≈ −0.4 for the largest system sizes
considered. dΔϕ=da diverges at the active critical point. The
inset shows an enlarged portion of the data in the black rectangle.
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moving at a velocity v so that _L ∼ v. If the dynamics of the
system is dominated by diffusive currents, we estimate
v ∼∇μ ∼Mσ=L2, where σ ¼ ½−8κa3=ð9b2Þ�1=2 is the
interfacial tension [35]. If the dynamics is dominated by
flow, then jvj can be estimated from the Stokes equation by
balancing viscous stress with elastic and active stresses as
ηv=L2 ∼ σa=L2 þ α=Lþ Kλ=L3, where, for convenience,
we have defined an effective active interface tension
σa ¼ κaσ=κ. This active tension arises from interfacial
active stresses and can be negative when κa < 0, resulting
in a self-shearing instability discussed previously in the
literature [21]. We can then write the rate of change of L as

_L ¼ s1
Mσ

L2
þ s2

σa
η
þ s3

λK
ηL

þ s4
αL
η
; ð3Þ

where si are unknown constants. For scalar models with no
coupling to nematic degrees of freedom, only the first two
terms appear in Eq. (3). Active interfacial stresses with
σa < 0 can then arrest coarsening through a self-shearing
instability, as discussed in Ref. [21]. This results in domains
of typical size L� ∼ ðMσ=jσajÞ1=2. When, however, the
active fluid is an extensile active nematic, bulk active
stresses of strength α < 0 lead to a different path to arrested
phase separation. Assuming for simplicity σa ¼ σ, the first
three terms on the right-hand side of Eq. (3) are positive,
hence, they describe coarsening, while the last is negative
for extensile activity and arrests domain growth.
We can identify three regimes: (i) In the early stages of

coarsening, growth is controlled by diffusion of material
from smaller to bigger droplets, with LðtÞ ∼ t1=3. If activity
is large enough, growth is arrested at short times when
active currents, of order ja ∼ αL=η, balance diffusive
currents of order jd ∼Mσ=L2, resulting in L� ∼ lD ¼
ðMση=jαjÞ1=3. (ii) At intermediate times, elastic nematic
stresses transmit interactions that drive domain growth,
with LðtÞ ∼ t1=2. This mechanism becomes relevant for
large nematic stiffness K, resulting in droplets size con-
trolled by the active length L� ∼ la ¼ ðK=jαjÞ1=2.
(iii) Finally, at late times, drops coalesce through hydro-
dynamic advection and LðtÞ ∼ t. In this regime, growth is
arrested when interfacial tension balances active stress,
which gives L� ∼ lσ ¼ σ=jαj.
Whether these regimes are all accessible experimentally

depends of course on parameter values. A detailed study of
the coarsening dynamics is left for future work. An
important prediction, however, is the dependence of the
steady state droplet size on activity α, which may provide a
criterion for sorting out the most relevant active mecha-
nisms in experimental realizations.
The scaling arguments presented above are supported by

an analysis of the linear stability of a flat interface at y ¼ 0.
The interfacial height hðx; tÞ is defined by writing the phase
field as ϕðr; tÞ ¼ f(yþ hðx; tÞ), such that fðuÞ changes
sharply at u ¼ 0, i.e., f0ðuÞ ≈ δðuÞ. We assume that the

active fluid occupying the region y > 0 is in an initial
uniform nematic state aligned with the interface, justi-
fied because extensile active nematics tend to align with
interfaces through a process called active anchoring
[13,36]. We can then write Qxx ≈ SðuÞ=2 and Qxy≈
SðuÞθðx; tÞ, where SðuÞ is the amplitude of the nematic
order parameter, with S0ðuÞ ≈ δðuÞ, and θðx; tÞ the small
angle of the nematic director with respect to the interface.
We eliminate the velocity vi by assuming low Reynolds
number and solving for the Stokes flow by imposing
incompressibility. The Fourier components of the velocity
are viðq; tÞ ¼ PijðqÞfjðq; tÞ=ηq2, with PijðqÞ ¼ δij − q̂iq̂j
a projection operator and q̂i ¼ qi=jqj. Following
Refs. [29,37], we can then obtain linear equations for
hðqx; tÞ and θðqx; tÞ given by [31]

∂t

�
h

θ

�
¼ A

�
h

θ

�
ð4Þ

with

A ¼

2
64 − σajqxj

4η − Mσjqxj3
2

− αiqx
2ηq2x

κaσjqxjiqx
4κη þ αð1−λÞiqx

8η − αλ
2η −

K
γ q

2
x

3
75: ð5Þ

For α ¼ 0, height and director fluctuations are decoupled.
Height fluctuations become unstable for σa < 0 below a
wave number q� ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijσaj=ðσηMÞp
, signaling arrested phase

separation with structures of size L� ∼ 2π=q�. Bulk exten-
sile activity (α < 0) destabilizes director fluctuations on all

FIG. 4. Droplet size as a function of the time for an initially
uniform state and various activity for two sets of parameters. Left:
lD ≈ 10lα (left), i.e., regime (i) where coarsening is controlled by
diffusion and we estimate L� ∼ jαj−1=3. Right: lα ≈ 10lD (right),
i.e., regime (ii) where coarsening is controlled by elasticity and
we estimate L� ∼ jαj−1=2. The insets show the scaling of the
saturation value L� with jαj.
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scales according to the generic instability of bulk active
nematics [23]. When σa > 0, the coupling to interfacial
relaxation can stabilize the nematic above a characteristic
length scale, often in a regime where the modes become
complex, signaling the propagation of surface waves
similar to capillary waves in inertial fluids [1,38].
A detailed analysis is presented in the Supplemental

Material [31]. As expected on the basis of scaling argu-
ments, q� is controlled by the three active length scales (for
σa ¼ σ) lD;la;lσ, with crossovers between the three
scalings with increasing activity. Figure 4 shows the growth
in time of droplet size in the microphase-separated state for
various activities, and the scaling of L� with activity (inset)
for two set of parameters corresponding to regimes (i)
and (ii).
In summary, we have shown that interfacial and bulk

active stresses play distinct roles in the LLPS of active and
passive mixtures. Previously studied interfacial stresses can
arrest the phase separation via a shearing instability of the
interface, but do not affect the location of the critical point.
This is because their action is confined at the interface,
where the concentration gradients are finite. In contrast,
bulk extensile active stresses can suppress phase separation
entirely by sustained self-stirring of the active component.
As a result, bulk active stresses can significantly shift the
critical point of the passive phase-separating mixture to
lower temperatures and shrink the size of the coexistence
region in the volume fraction-temperature plane. Within the
coexistence region, phase separation is arrested leading to
an emulsion steady state of dynamic droplets that contin-
uously coalesce and split due to the shear flows created by
the active nematic.
Our Letter quantifies the role of activity on the phase

diagram of phase-separating active-passive binary mix-
tures. It highlights the distinct roles of interfacial and bulk
active stresses, and it shows that bulk active stresses
coupling to liquid crystalline degrees of freedom can shift
the critical point. Our results on the scaling of the typical
droplet size as a function of the activity in the dynamical
emulsion offer quantitative criteria for discerning the
mechanisms that arrest phase separation in experiments
and simulations.
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