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A Josephson diode is a nonreciprocal circuit element that supports a larger dissipationless supercurrent
in one direction than in the other. In this Letter, we propose a class of Josephson diodes based on
supercurrent interferometers composed of Andreev bound state Josephson junctions or interacting quantum
dot Josephson junctions, which are not diodes themselves but possess nonsinusoidal current-phase
relations. We show that such Josephson diodes have several important advantages, like being electrically
tunable and requiring only time-reversal breaking by a magnetic flux. We also show that our diodes have a
characteristic ac response, revealed by the Shapiro steps. Even the simplest realization of our Josephson
diode paradigm that relies on only two junctions can achieve efficiencies of up to ∼40% and, interestingly,
far greater efficiencies are achievable by concatenating interferometer loops. We hope that our Letter will
stimulate the search for highly tunable Josephson diode effects in Josephson devices based semiconductor-
superconductor hybrids, 2d materials, and topological insulators, where nonsinusoidal current-phase
relations were recently observed.
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Nonreciprocal circuit elements underlie many applica-
tions of semiconductor electronics, such as current recti-
fiers, power converters, and photodetectors. The most
paradigmatic example of a nonreciprocal circuit element
is the semiconductor diode that, conditioned on the polarity
of a voltage bias, controls a dissipative current flow. Driven
by the need for energy-efficient circuitry, there has recently
been mounting interest in extending the concept of a
semiconducting diode to a “Josephson diode” (JD)
[1–27] that, depending on the direction of a current bias,
supports a larger dissipationless supercurrent in one
direction than in the other. Promising applications of such
a JD could comprise superconducting (SC) electronic
circuits with reduced power consumption and signal iso-
lation in superconducting neural networks [28,29].
However, a difficulty toward realizing a JD is that the

current-phase relation (CPR) in time-reversal or inversion-
symmetric Josephson junctions (JJs) is symmetric around
zero SC phase difference, IðφÞ ¼ −Ið−φÞ. This property
ensures that the critical currents for the two current-bias
directions, Iþc and I−c , are equal so that a JD effect is
missing. To circumvent this constraint, previous Letters
studied a diode effect in inversion-symmetry breaking
superconducting thin films [1–6], JJs of finite-momentum
superconductors [7–9], JJs of multilayered materials
[10–14], topological insulator JJs [15,16], and spin-orbit
coupled 2d electron gas JJs subject to a Zeeman field
[17–19]. Moreover, it was noted that a diode effect can arise
in spin-orbit coupled nanowire JJs subject to a Zeeman field
[20–23], magnetic junctions [24–26], and domain wall SC
channels [27].

In this Letter, we consider an alternative platform for a
JD in a supercurrent interferometer containing two or
more mesoscopic JJs, such as quantum material JJs
hosting highly transmitting Andreev bound states or
quantum dots. These JJs are not diodes themselves but

FIG. 1. (a) Minimal experimental setup for a JD interferometer
comprising two JJs with nonsinusoidal CPRs. (b) Interference of
different supercurrent harmonics Il¼1;2 that gives rise to the JD
effect. (c) Critical currents for two current-bias directions I�c in a
quantum point contact interferometer versus external flux Φ.
(d) Diode efficiency η of an Andreev interferometer versus
external flux Φ and transmission τ2 of the second JJ. The
transmission of the first JJ is τ1 ¼ 0.7.
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have a high-harmonic content in their CPR. We show that
such JDs have multiple advantages, such as being all-
electrical tunable and requiring only time-reversal breaking
by a magnetic flux. For characterizing the JD effect, we use
the diode efficiency, defined as

η ¼ ΔIc
Iþc þ I−c

with ΔIc ¼ jIþc − I−c j: ð1Þ

While we show that this diode efficiency can reach ∼40%
for the single-loop interferometer with two JJs, we also
propose a route for systematically increasing the diode
efficiency by concatenating multiple interferometers.
Finally, we show that the JD effect also manifests itself
in the ac response of our setup as asymmetric Shapiro steps
and we discuss applications of our JD paradigm for
calibrating protected superconducting qubits [30–33].
Setup and minimal model.—Our setup comprises a pair

of mesoscopic JJs (l ¼ 1, 2) that connect two conventional
SC leads to form a supercurrent interferometer (or super-
conducting quantum interference device, SQUID), see
Fig. 1(a). To illustrate the origin of the JD effect in such
an interferometer, we introduce a minimal model in which
the CPRs of the two JJs include only a first harmonic and
second harmonic contribution,

IlðφÞ ¼ Ið1Þl sinðφÞ þ Ið2Þl sinð2φÞ: ð2Þ

Here, φ is the SC phase difference and IðmÞ
l is the amplitude

of the mth harmonic for the lth JJ. Upon piercing an
external magnetic flux Φ, through the area between the JJs,
the total CPR of the interferometer reads

IðφÞ ¼ I1ðφÞ þ I2ðφ − 2πΦ=Φ0Þ: ð3Þ

Here, Φ0 ¼ h=2e denotes the magnetic flux quantum and
we have assumed that self-inductance effects [34] are
negligible, implying that (by fabrication) the only differ-
ence between the interferometer arms arises from the two
JJs. The critical currents for the two current-bias directions
are then given by I�c ¼ maxφ½�IðφÞ�.
With this minimal model, we can now explain how the

JD effect arises. For that purpose, we initially set Φ ¼
Φ0=8 and consider the case when one JJ comprises only a
first harmonic I1ðφÞ ∝ sinðφÞ, while the other JJ comprises
only a second harmonic I2ðφ − 2πΦ=Φ0Þ ∝ cosð2φÞ. As
shown in Fig. 1(b), the two CPRs then interfere destruc-
tively for −π < φ < 0 and constructively for 0 < φ < π.
This interference effect, which behaves opposite for pos-
itive and negative SC phase differences, gives rise to
unequal critical currents for the two current bias directions
Iþc ≠ I−c , and thus to a JD effect.
This conceptual picture of the JD effect’s origin does not

change qualitatively when adding additional harmonics
to the JJ CPRs. In the previous situation when one JJ

comprised only a second harmonic so that Ið1Þ2 ¼ 0, the I−c
critical current corresponded to one of two minima within
the range −π < φ < 0, see Fig. 1(b). When gradually
turning on, for example, a finite first harmonic so that

Ið1Þ2 > 0, these two minima acquire different depth.
However, the values of the global maximum and minimum
of the CPR remain different and thus Iþc ≠ I−c .
Andreev interferometer.—So far, our minimal model

helped us develop a conceptual picture of the JD effect in
supercurrent interferometers. A natural next step is to
clarify the detailed experimental requirements for a JD.
For that purpose, we will consider more realistic interfer-
ometer setups with JJs that comprise beyond-second
harmonic contributions, extending the minimal model of
Eq. (2). We first consider an interferometer with JJs for
which Andreev bound states with gate-tunable transmis-
sions mediate the supercurrent. Such Andreev bound state
JJs have recently been realized in spin-orbit coupled
semiconductor JJs [35,36], topological insulator JJs
[37–39], or graphene JJs [40,41]. The CPR of an
Andreev JJs is given by [42,43],

IlðφÞ ¼
eΔ2τl
2ℏ

sinðφÞ
εlðφÞ

Tanh½εlðφÞ=2kBT�;

εlðφÞ ¼ Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τlsin2ðφ=2Þ

q
: ð4Þ

Here, εlðφÞ are the Andreev levels that emerge within the
SC gap Δ and that mediate the supercurrent. Moreover, τl
are the transmission of the lth JJ and T is the temperature.
Henceforth, we will assume kBT ≪ Δ. In this situation, the
CPR of Eq. (4) is approximately sinusoidal for small
transmissions, IlðφÞ ∝ sinðφÞ if τl ≪ 1. However, for
large transmissions τl ≲ 1, the CPR gets increasingly
“skewed,” thereby acquiring higher harmonic content,

IlðφÞ ¼ Ið1Þl sinðφÞ þ Ið2Þl sinð2φÞ þ � � �.
Returning to our question on the experimental require-

ments for the JD, we proceed by computing the diode
efficiency of the Andreev interferometer as a function of the
transmissions τl and the external flux Φ. A representative
result is depicted in Fig. 1(d). It shows that the JD diode
efficiency η comprises four lobes with a maximum effi-
ciency of ∼40%. Moreover, we find from the simulations
that the JD requires only three simple requirements that
need to be simultaneously satisfied: (1) The external flux
should not be an integer multiple of the half flux quantum
Φ ≠ nΦ0=2. If this condition is not satisfied, then IðφÞ ¼
−Ið−φÞ and Iþc ¼ I−c , implying that the JD effect vanishes,
see Fig. 1(c). (2) The junction transmissions should not be
equal, τ1 ≠ τ2. If this condition is not satisfied, then the
CPR has the property IðφÞ ¼ −Ið−φþ 2πΦ=Φ0Þ, imply-
ing Iþc ¼ I−c . The vanishing diode efficiency when τ1 ¼ τ2
is shown by the dashed line in Fig. 1(d). (3) At least one of
the JJ needs to be highly transmitting. This requirement
ensures a sizable higher harmonic content in the total CPR.
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If such a higher harmonic content is negligible (compared
to the magnitude of the first harmonics), then the JD effect
is again missing.
Last, we note that at the special point when Φ ¼ Φ0=2

and τ1 ¼ τ2, all odd harmonics vanish in the interferometer
CPR, IðφÞ ∝ sinð2φÞ þ � � �. In this case, the interferometer
can (if shunted by a large capacitor) realize a protected
superconducting qubit that stores quantum information in
states of opposite Cooper-pair parity [30–33]. An applica-
tion of our proposed diode effect is thus the calibration of
such protected superconducting qubits by mapping out the
phase diagram of Fig. 1(d).
Interacting quantum dot interferometer.—We have seen

in the previous section that a CPR with higher harmonic
content due to highly transmitting Andreev bound states
can give rise to a JD effect. In this section, we consider
another established approach for realizing higher harmon-
ics with a JJ composed of a spin-degenerate quantum dot
(QD) with charging energy U that couples with tunneling
amplitudes tL=R to SC leads with SC gap Δ. Such a QD JJ
can reverse the supercurrent when a gate voltage tunes the
offset charge ng on the dot [44,45]. Close to the super-
current reversal, single Cooper pairs tunnel with approx-
imately equal amplitude in the forward and reverse
direction. As a result, the net current due to single
Cooper pair tunneling, corresponding to the first harmonic,
is reduced. In this regime, it was observed that higher
harmonics contributions become relevant [46,47].
Motivated by this alternative mechanism to generate

higher harmonics, we consider a second realization of the
supercurrent interferometer with one low-transmitting JJ
and one QD JJ. We first compute, assuming the zero-
bandwidth approximation in the leads [48,49], the CPR of
the QD JJ. For the detailed model, see Ref. [50]. Our results
are shown in Fig. 2(a). We find that the first harmonic is
reduced close to the supercurrent reversal transitions, while
the second harmonic exhibits an enhancement. If we now

arrange the QD JJ and a JJ with transmission τ ≪ 1 in a
supercurrent interferometer, the JD effect emerges again.
We have computed the diode efficiency in Fig. 2(b). As
expected, the diode efficiency is maximal near the super-
current reversal transitions where first and second harmon-
ics have comparable magnitudes.
Diode efficiency optimization.—Our previous JD imple-

mentations achieved efficiencies η ∼ 40%, see Figs. 1(c)
and 2(b). We will now discuss how the diode efficiency can
be optimized. One conceptual approach is to include
additional harmonics in the CPR that elevate the critical
current in one direction and reduce it in the reverse one. As
an example, we return to Fig. 1(b) where IðφÞ ∝ sinðφÞ −
cosð2φÞ= ffiffiffi

2
p

and add a third harmonic ∝ − sinð3φÞ= ffiffiffi
3

p
.

This third harmonic will destructively and constructively
interfere with the minima and maxima of the CPR, thereby
enhancing the JD effect. Adding further harmonics so that
IðφÞ ∝ P

N
n¼1 cos½nðφ − π=2Þ�= ffiffiffi

n
p

leads to a CPR that
approaches asymptotically η ¼ 1 for increasing N [50].
To implement this approach experimentally, we propose

an array of parallel Andreev JJs arranged in an interfer-
ometer setup, see Fig. 3(a). We expect that tuning indi-
vidually the interferometer fluxes and transmissions will
create an optimized JD effect as discussed above. To find
the maximum diode efficiencies, we use Monte Carlo
maximization, randomly sampling the parameter space
of transmissions and fluxes. We use ∼109 sampling points,
sufficient to find the maximum diode efficiency for NJ ∼
10 JJs. Results for the maximum efficiency are shown in
Fig. 3(a) as a function of NJ. We find that the efficiency
grows monotonously with NJ, increasing faster for small
NJ. These results suggest that already a small number of
concatenated loops is sufficient to significantly improve the
diode efficiency.
However, we note that it is not possible to achieve perfect

efficiency with a finite number of JJs, since there is no
phase-independent term in a CPR. Hence, it is relevant to
set bounds on the maximal efficiency achievable with NJ
JJs that are not diodes themselves. Two JJs achieve the

FIG. 2. (a) First and second harmonic Ið1;2Þ of a QD JJ CPR
with ðU; tL; tR; TÞ ¼ ð3; 2=3; 2=3; 0.001ÞΔ versus offset charge,
ng. See Ref. [50] for the detailed model. (b) Diode efficiency η for
an interferometer with a QD JJ and low-transmitting JJ versus
flux Φ and offset charge ng. Here, η is optimized with respect to
the JJ transmission. QD parameters are as in (a).

FIG. 3. (a) Maximum diode efficiency η for NJ JJs concat-
enated in an interferometer array (as shown in the inset). Dashed
lines show η� ¼ ðNJ − 1Þ=NJ. (b) CPR in the maximum diode
efficiency configuration for various NJ .
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highest diode efficiency when the supercurrent interference
is optimal: the CPR maxima align, while the minimum of
one junction aligns with the maximum of the other one.
With this reasoning, the best upper bound we found is given
by 50% for two JJs. By concatenating NJ JJs in the same
way, the best upper bound we found for the diode efficiency
is η� ¼ ðNJ − 1Þ=NJ [50].
Shapiro steps.—While we have so far explored the JD

effect in dc-biased interferometers, it is natural to ask if
there are also manifestations of the JD effect in an
interferometer with both an applied dc bias and ac bias.
To address this question, we consider for concreteness an
interferometer with single-channel Andreev JJs. The time
dependence of the phase difference φðtÞ and the voltage
drop VðtÞ ¼ ðℏ=2eÞ _φðtÞ is given by [56–58],

ℏ
2eR

_φðtÞ þ I½φðtÞ� ¼ idc þ iac sinðωtÞ: ð5Þ
Here, idc and iac are the amplitudes of the dc and ac bias.
Moreover, ω is the driving frequency and R is a shunt resis-
tance in parallel to the interferometer. For IðφÞ ∝ sinðφÞ,
the primary consequence of Eq. (5) is the appearance of
voltage plateaus or “Shapiro steps” in the idc − V curve
when V ¼ Vn ≡ 2nℏω=e. Here, n is an integer. We now
want to understand how these Shapiro steps change for our
JD interferometer.
To identify the possible changes of the Shapiro pattern

for a JD interferometer, we have solved Eq. (5) numerically,

leading to two notable findings: (1) In the idc − V curve of a
conventional JJ with sinusoidal CPR, the step size (or
plateau length in idc) of the nth Shapiro step at V ¼ Vn is
equal to the step size of the −nth Shapiro step,Δin ¼ Δi−n.
This equality follows from the property idcðVÞ¼−idcð−VÞ.
In a JD interferometer, this no longer holds. As shown in
Fig. 4(a), we find that the step sizes of the nth and −nth
Shapiro steps are, in general, unequal, Δin ≠ Δi−n. This
unusual behavior of the Shapiro step size becomes par-
ticularly apparent when tuning iac, which shows oscilla-
tions with a relative offset between Δin and Δi−n, see
Fig. 4(b). (2) For a conventional JJ with no JD effect, a plot
of the differential resistance dV=didc versus iac and idc
shows a “fanlike” pattern with sharp peaks marking the
Shapiro steps. As shown in Fig. 4(c), in the absence of the
JD effect, the peaks in the differential resistance are mirror
symmetric with respect to idc ¼ 0 and the separation
between neighboring peaks on a fan (for fixed iac) gives
the Shapiro step size. In a JD interferometer, the differential
resistance peaks lack the symmetry around idc ¼ 0, see
Fig. 4(d). This unusual behavior arises due to the unequal
critical currents for the two current-bias directions, so that
the peaks emerge at different idc values for iac ¼ 0.
Moreover, the separation between neighboring peaks is
different for positive and negative dc current bias directions,
which reconfirms our previous finding that Δin ≠ Δi−n.
Finally, we remark that earlier works have found that

“fractional Shapiro steps” can arise in Andreev JJs at
voltages V ¼ Vn=m ≡ 2ðn=mÞℏω=e due to the higher
harmonic content in the CPR [59–61]. Interestingly, such
fractional Shapiro steps can emerge in our setup in an even
more pronounced way if τl ≲ 1. For example, by setting
Φ ¼ Φ0=2 and tuning the JJs from an unbalanced (τ1 ≠ τ2)
to a balanced situation (τ1 ¼ τ2), we find an exact doubling
of the Shapiro steps, with all integer steps having the same
height as half-integer steps, see Fig. 5. This exact doubling
of Shapiro steps is due to a CPR with only even harmonics
IðφÞ ∝ sinð2φÞ þ � � �, and could provide another way of
calibrating protected superconducting qubits [30–33],

FIG. 4. (a) idc − V curve of an ac-biased Andreev interfero-
meter, showing Shapiro steps with step heights Δin. (b) Step
heights, Δi�1, as a function of Iac, showing a relative offset.
(c) Differential resistance, dV=dIdc, versus Iac and Idc, for an
interferometer without JD effect, showing a symmetry around
Idc ¼ 0. (d) Same as (c) but for a interferometer with JD effect.
The symmetry around Idc ¼ 0 is missing. Parameters used for
all plots are ðτ1; τ2;Φ=Φ0;ωÞ ¼ ð0.7; 0.99; 0.32; 0.2ΛÞ with
Λ ¼ ð2eR=ℏÞðeΔ=ℏÞ, except (c) uses τ2 ¼ 0.7.

FIG. 5. Shapiro steps in the idc-V curve for an dc- and ac-biased
Andreev interferometer with drive amplitude iac ¼ 0.4eΔ=ℏ and
Φ=Φ0 ¼ 1=2 (a) For ðτ1; τ2Þ ¼ ð0.99; 0.95Þ, fractional Shapiro
steps appear, highlighted by red arrows, which signal the im-
portance of higher harmonics. (b) For ðτ1; τ2Þ ¼ ð0.99; 0.99Þ, the
fractional Shapiro steps have the same step heights as the integer
Shapiro steps.
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complementary to the method proposed in the section on
the Andreev interferometer.
Conclusions.—We studied a JD effect in supercurrent

interferometers of JJs with a nonsinusoidal CPR. We
showed that such interferometers achieve sizable diode
efficiencies, optimizable by concatenating interferometer
loops. We also discussed a manifestation of the JD effect in
the Shapiro steps and applications for qubit calibration.
Exciting future directions may include the study of JDs
with methods of circuit quantum electrodynamics when the
flux Φ is replaced by a quantized field [62].
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Garcia and M. Kjaergaard. We acknowledge funding from
the Swedish Research Council (VR) and the European
Research Council (ERC) under the European Union’s
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Grant Agreement No. 856526, and NanoLund. We also
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Note added.—Recently, a manuscript [63] appeared, pro-
viding complementary analytical results on the JD effect for
a variant of the minimal model of Eq. (2).

[1] F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y.
Shiota, T. Moriyama, Y. Yanase, and T. Ono, Nature
(London) 584, 373 (2020).

[2] L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner, N. Paulik,
J. M. Bauer, K.-Q. Lin, J. M. Lupton, T. Taniguchi, K.
Watanabe et al., Nat. Commun. 13, 4266 (2022).

[3] A. Daido, Y. Ikeda, and Y. Yanase, Phys. Rev. Lett. 128,
037001 (2022).

[4] J. Shin, S. Son, J. Yun, G. Park, K. Zhang, Y. J. Shin, J.-G.
Park, and D. Kim, arXiv:2111.05627.

[5] J. J. He, Y. Tanaka, and N. Nagaosa, New J. Phys. 24,
053014 (2022).

[6] S. Ilić and F. S. Bergeret, Phys. Rev. Lett. 128, 177001
(2022).

[7] B. Pal, A. Chakraborty, P. K. Sivakumar, M. Davydova,
A. K. Gopi, A. K. Pandeya, J. A. Krieger, Y. Zhang, S. Ju, N.
Yuan et al., arXiv:2112.11285.

[8] M. Davydova, S. Prembabu, and L. Fu, Sci. Adv., 8 (2022).
[9] N. F. Yuan and L. Fu, Proc. Natl. Acad. Sci. U.S.A. 119,

e2119548119 (2022).
[10] H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco, U.

Filippozzi, S. S. Parkin, Y.-J. Zeng, T. McQueen, and M. N.
Ali, Nature (London) 604, 653 (2022).

[11] J. Diez-Merida, A. Diez-Carlon, S. Y. Yang, Y.-M. Xie,
X.-J. Gao, K. Watanabe, T. Taniguchi, X. Lu, K. T. Law, and
D. K. Efetov, arXiv:2110.01067.

[12] J.-X. Lin, P. Siriviboon, H. D. Scammell, S. Liu, D. Rhodes,
K. Watanabe, T. Taniguchi, J. Hone, M. S. Scheurer, and J.
Li, Nat. Phys. 18, 1221 (2022).

[13] H. D. Scammell, J. Li, and M. S. Scheurer, 2D Mater. 9,
025027 (2022).

[14] Y. Zhang, Y. Gu, J. Hu, and K. Jiang, Phys. Rev. X 12,
041013 (2022).

[15] A. Kononov, G. Abulizi, K. Qu, J. Yan, D. Mandrus, K.
Watanabe, T. Taniguchi, and C. Schönenberger, Nano Lett.
20, 4228 (2020).

[16] C.-Z. Chen, J. J. He, M. N. Ali, G.-H. Lee, K. C. Fong, and
K. T. Law, Phys. Rev. B 98, 075430 (2018).

[17] C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S.
Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, P. E.
Faria Junior, D. Kochan, J. Fabian, N. Paradiso, and C.
Strunk, Nat. Nanotechnol. 17, 39 (2021).

[18] C. Baumgartner, L. Fuchs, A. Costa, J. Picó-Cortés, S.
Reinhardt, S. Gronin, G. C. Gardner, T. Lindemann, M. J.
Manfra, P. E. F. Junior, D. Kochan, J. Fabian, N. Paradiso,
and C. Strunk, J. Phys. Condens. Matter 34, 154005 (2022).

[19] A. A. Reynoso, G. Usaj, C. A. Balseiro, D. Feinberg, and M.
Avignon, Phys. Rev. B 86, 214519 (2012).

[20] T. Yokoyama, M. Eto, and Y. V. Nazarov, J. Phys. Soc. Jpn.
82, 054703 (2013).

[21] T. Yokoyama, M. Eto, and Y. V. Nazarov, Phys. Rev. B 89,
195407 (2014).

[22] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, Phys.
Rev. Lett. 103, 147004 (2009).

[23] A. Brunetti, A. Zazunov, A. Kundu, and R. Egger, Phys.
Rev. B 88, 144515 (2013).

[24] S. Pal and C. Benjamin, Europhys. Lett. 126, 57002 (2019).
[25] K. Halterman, M. Alidoust, R. Smith, and S. Starr, Phys.

Rev. B 105, 104508 (2022).
[26] E. Strambini, M. Spies, N. Ligato, S. Ilic, M. Rouco, C. G.

Orellana, M. Ilyn, C. Rogero, F. Bergeret, J. Moodera et al.,
Nat. Commun. 13, 2431 (2022).

[27] M. Silaev, A. Y. Aladyshkin, M. Silaeva, and A.
Aladyshkina, J. Phys. Condens. Matter 26, 095702 (2014).

[28] A. E. Schegolev, N. V. Klenov, I. I. Soloviev, A. L. Gudkov,
and M. V. Tereshonok, Nanobiotechnol. Rep. 16, 811
(2021).

[29] L. Fu, J. Club Condens. Matter Phys. (2021).
[30] T. W. Larsen, M. E. Gershenson, L. Casparis, A. Kringhøj,

N. J. Pearson, R. P. G. McNeil, F. Kuemmeth, P. Krogstrup,
K. D. Petersson, and C. M. Marcus, Phys. Rev. Lett. 125,
056801 (2020).

[31] A. Gyenis, A. Di Paolo, J. Koch, A. Blais, A. A. Houck, and
D. I. Schuster, PRX Quantum 2, 030101 (2021).

[32] C. Schrade, C. M. Marcus, and A. Gyenis, PRX Quantum 3,
030303 (2022).

[33] A. Maiani, M. Kjaergaard, and C. Schrade, PRX Quantum
3, 030329 (2022).

[34] T. Fulton, L. Dunkleberger, and R. Dynes, Phys. Rev. B 6,
855 (1972).

[35] E. M. Spanton, M. Deng, S. Vaitiekėnas, P. Krogstrup, J.
Nygård, C. M. Marcus, and K. A. Moler, Nat. Phys. 13,
1177 (2017).

[36] F. Nichele, E. Portolés, A. Fornieri, A. M. Whiticar, A. C. C.
Drachmann, S. Gronin, T. Wang, G. C. Gardner, C. Thomas,
A. T. Hatke, M. J. Manfra, and C. M. Marcus, Phys. Rev.
Lett. 124, 226801 (2020).

[37] I. Sochnikov, L. Maier, C. A. Watson, J. R. Kirtley,
C. Gould, G. Tkachov, E. M. Hankiewicz, C. Brüne,
H. Buhmann, L. W. Molenkamp, and K. A. Moler, Phys.
Rev. Lett. 114, 066801 (2015).

PHYSICAL REVIEW LETTERS 129, 267702 (2022)

267702-5

https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41467-022-31954-5
https://doi.org/10.1103/PhysRevLett.128.037001
https://doi.org/10.1103/PhysRevLett.128.037001
https://arXiv.org/abs/2111.05627
https://doi.org/10.1088/1367-2630/ac6766
https://doi.org/10.1088/1367-2630/ac6766
https://doi.org/10.1103/PhysRevLett.128.177001
https://doi.org/10.1103/PhysRevLett.128.177001
https://arXiv.org/abs/2112.11285
https://doi.org/10.1126/sciadv.abo0309
https://doi.org/10.1073/pnas.2119548119
https://doi.org/10.1073/pnas.2119548119
https://doi.org/10.1038/s41586-022-04504-8
https://arXiv.org/abs/2110.01067
https://doi.org/10.1038/s41567-022-01700-1
https://doi.org/10.1088/2053-1583/ac5b16
https://doi.org/10.1088/2053-1583/ac5b16
https://doi.org/10.1103/PhysRevX.12.041013
https://doi.org/10.1103/PhysRevX.12.041013
https://doi.org/10.1021/acs.nanolett.0c00658
https://doi.org/10.1021/acs.nanolett.0c00658
https://doi.org/10.1103/PhysRevB.98.075430
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1088/1361-648X/ac4d5e
https://doi.org/10.1103/PhysRevB.86.214519
https://doi.org/10.7566/JPSJ.82.054703
https://doi.org/10.7566/JPSJ.82.054703
https://doi.org/10.1103/PhysRevB.89.195407
https://doi.org/10.1103/PhysRevB.89.195407
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevB.88.144515
https://doi.org/10.1103/PhysRevB.88.144515
https://doi.org/10.1209/0295-5075/126/57002
https://doi.org/10.1103/PhysRevB.105.104508
https://doi.org/10.1103/PhysRevB.105.104508
https://doi.org/10.1038/s41467-022-29990-2
https://doi.org/10.1088/0953-8984/26/9/095702
https://doi.org/10.1134/S2635167621060227
https://doi.org/10.1134/S2635167621060227
https://doi.org/10.36471/JCCM_April_2021_02
https://doi.org/10.1103/PhysRevLett.125.056801
https://doi.org/10.1103/PhysRevLett.125.056801
https://doi.org/10.1103/PRXQuantum.2.030101
https://doi.org/10.1103/PRXQuantum.3.030303
https://doi.org/10.1103/PRXQuantum.3.030303
https://doi.org/10.1103/PRXQuantum.3.030329
https://doi.org/10.1103/PRXQuantum.3.030329
https://doi.org/10.1103/PhysRevB.6.855
https://doi.org/10.1103/PhysRevB.6.855
https://doi.org/10.1038/nphys4224
https://doi.org/10.1038/nphys4224
https://doi.org/10.1103/PhysRevLett.124.226801
https://doi.org/10.1103/PhysRevLett.124.226801
https://doi.org/10.1103/PhysRevLett.114.066801
https://doi.org/10.1103/PhysRevLett.114.066801


[38] M. Kayyalha, A. Kazakov, I. Miotkowski, S. Khlebnikov,
L. P. Rokhinson, and Y. P. Chen, npj Quantum Mater. 5, 7
(2020).

[39] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon,
I. Drozdov et al., Nat. Phys. 14, 918 (2018).

[40] C. D. English, D. R. Hamilton, C. Chialvo, I. C. Moraru, N.
Mason, and D. J. Van Harlingen, Phys. Rev. B 94, 115435
(2016).

[41] G. Nanda, J. L. Aguilera-Servin, P. Rakyta, A. Kormányos,
R. Kleiner, D. Koelle, K. Watanabe, T. Taniguchi,
L. M. Vandersypen, and S. Goswami, Nano Lett. 17,
3396 (2017).

[42] C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
[43] J. M. Martinis and K. Osborne, arXiv:cond-mat/0402415.
[44] B. I. Spivak and S. A. Kivelson, Phys. Rev. B 43, 3740

(1991).
[45] J. A. Van Dam, Y. V. Nazarov, E. P. Bakkers, S.

De Franceschi, and L. P. Kouwenhoven, Nature (London)
442, 667 (2006).

[46] R. Delagrange, R. Weil, A. Kasumov, M. Ferrier,
H. Bouchiat, and R. Deblock, Phys. Rev. B 93, 195437
(2016).

[47] S. Hart, Z. Cui, G. Ménard, M. Deng, A. E. Antipov, R. M.
Lutchyn, P. Krogstrup, C. M. Marcus, and K. A. Moler,
Phys. Rev. B 100, 064523 (2019).

[48] R. Allub, C. Wiecko, and B. Alascio, Phys. Rev. B 23, 1122
(1981).

[49] J. C. Estrada Saldaña, A. Vekris, G. Steffensen, R. Žitko, P.
Krogstrup, J. Paaske, K. Grove-Rasmussen, and J. Nygård,
Phys. Rev. Lett. 121, 257701 (2018).

[50] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.267702, which in-
cludes Refs. [44,48,49,51–55], for details on the model for
the quantum dot interferometer, the diode efficiency opti-
mization, the fractional Shapiro steps, and the temperature
dependence of the Josephson diode effect.

[51] C. Schrade, S. Hoffman, and D. Loss, Phys. Rev. B 95,
195421 (2017).

[52] M. J. Rančić, S. Hoffman, C. Schrade, J. Klinovaja, and D.
Loss, Phys. Rev. B 99, 165306 (2019).

[53] M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B
70, 020502(R).

[54] C. Karrasch, A. Oguri, and V. Meden, Phys. Rev. B 77,
024517 (2008).

[55] M. Tachiki, T. Koyama, and S. Takahashi, Prog. Theor.
Phys. Suppl. 108, 297 (1992).

[56] W. Stewart, Appl. Phys. Lett. 12, 277 (1968).
[57] D. McCumber, J. Appl. Phys. 39, 3113 (1968).
[58] J. Park, Y.-B. Choi, G.-H. Lee, and H.-J. Lee, Phys. Rev. B

103, 235428 (2021).
[59] J. C. Cuevas, J. Heurich, A. Martín-Rodero, A. Levy Yeyati,

and G. Schön, Phys. Rev. Lett. 88, 157001 (2002).
[60] R. Duprat and A. Levy Yeyati, Phys. Rev. B 71, 054510

(2005).
[61] M. Chauvin, P. Vom Stein, H. Pothier, P. Joyez, M. E.

Huber, D. Esteve, and C. Urbina, Phys. Rev. Lett. 97,
067006 (2006).

[62] X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori,
Phys. Rep. 718, 1 (2017).

[63] Y. V. Fominov and D. S. Mikhailov, Phys. Rev. B 106,
134514 (2022).

PHYSICAL REVIEW LETTERS 129, 267702 (2022)

267702-6

https://doi.org/10.1038/s41535-020-0209-5
https://doi.org/10.1038/s41535-020-0209-5
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1103/PhysRevLett.67.3836
https://arXiv.org/abs/cond-mat/0402415
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1038/nature05018
https://doi.org/10.1038/nature05018
https://doi.org/10.1103/PhysRevB.93.195437
https://doi.org/10.1103/PhysRevB.93.195437
https://doi.org/10.1103/PhysRevB.100.064523
https://doi.org/10.1103/PhysRevB.23.1122
https://doi.org/10.1103/PhysRevB.23.1122
https://doi.org/10.1103/PhysRevLett.121.257701
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.267702
https://doi.org/10.1103/PhysRevB.95.195421
https://doi.org/10.1103/PhysRevB.95.195421
https://doi.org/10.1103/PhysRevB.99.165306
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1103/PhysRevB.77.024517
https://doi.org/10.1103/PhysRevB.77.024517
https://doi.org/10.1143/PTPS.108.297
https://doi.org/10.1143/PTPS.108.297
https://doi.org/10.1063/1.1651991
https://doi.org/10.1063/1.1656743
https://doi.org/10.1103/PhysRevB.103.235428
https://doi.org/10.1103/PhysRevB.103.235428
https://doi.org/10.1103/PhysRevLett.88.157001
https://doi.org/10.1103/PhysRevB.71.054510
https://doi.org/10.1103/PhysRevB.71.054510
https://doi.org/10.1103/PhysRevLett.97.067006
https://doi.org/10.1103/PhysRevLett.97.067006
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevB.106.134514
https://doi.org/10.1103/PhysRevB.106.134514

