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The three-dimensional emergent magnetic field Be of a magnetic hopfion gives rise to emergent
magnetomultipoles in a similar manner to the multipoles of classical electromagnetic field. Here, we show
that the nonlinear responses of a hopfion are characterized by its emergent magnetic toroidal moment
Te
z ¼ 1

2

R ðr×BeÞzdV and emergent magnetic octupole component Γe ¼ R ½ðx2 þ y2ÞBe
z − xzBe

x − yzBe
y�dV.

The hopfion exhibits nonreciprocal dynamics (nonlinear hopfion Hall effect) under an ac driving current
applied along (perpendicular to) the direction of Te

z . The sign of nonreciprocity and nonlinear Hall angle is
determined by the polarity and chirality of hopfion. The nonlinear electrical transport induced by a
magnetic hopfion is also discussed. This Letter reveals the vital roles of emergent magnetomultipoles in
nonlinear hopfion dynamics and could stimulate further investigations on the dynamical responses of
topological spin textures induced by emergent electromagnetic multipoles.
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Topological spin textures (TSTs) like magnetic skyrmion
have sparked intense attention due to their novel physical
properties and attractive potential for applications [1,2].
Two fundamental quantities characterizing the spin dynam-
ics and the transport phenomena associated with a spin
texture are the vector and scalar spin chirality, which are
related to the broken spatial-inversion I and time-reversal
symmetry T , respectively. The scalar spin chirality acts as
an effective real-space Berry curvature (the emergent
magnetic field Be) on conduction electrons and its spatial
integral reflects the topological skyrmion number. To date,
tremendous efforts have been made to study scalar spin
chirality related effects, leading to the discovery of many
fascinating phenomena such as topological Hall effect
[3–5], skyrmion Hall effect [6–8], emergent electromag-
netic inductance [9,10], etc. Therefore, identifying such
fundamental quantities relevant to the spin texture’s dynam-
ics and transport properties is of vital importance.
The multipole, which originated from classical electro-

magnetic field, has been a well-established fundamental
concept in many branches of physics [11–13]. In con-
densed matter systems, the multipoles defined within
different contents can serve as alluring sources of
generating nonlinear and/or nonreciprocal responses
[14–19]. The multipole concept can also be applied to
the emergent magnetic field Be [1,9] associated with
TSTs in which emergent magnetomultipoles may be
further identified. However, unlike their counterparts,
such as the momentum-space Berry curvature dipole and
multipole [20–23], the role of emergent magnetomulti-
poles has not been well explored so far.
Recently, interest in realizing three-dimensional (3D)

TSTs in magnetic materials has emerged with a focus on

their rich 3D topologies and veiled physical properties
[24–28]. One example is the magnetic hopfion, a class of
TST with diverse 3D structures [29–35] characterized by
the Hopf charge QH [36–38]. Even the simplest form of
hopfion (i.e., QH ¼ 1) hosts sophisticated spin structure
and 3D emergent magnetic field, leading to interesting
dynamical properties such as the entangled current-
driven dynamics [39,40] and field-driven resonance modes
[41–44]. Hence, the 3D structure of Be of the hopfion
provides a versatile platform to explore the role of emergent
magnetomultipoles.
In this Letter, we show that the emergent magnetomulti-

poles of a QH ¼ 1 magnetic hopfion characterizes the
nonlinear responses of both the spin dynamics and electron
transports. The toruslike hopfion possesses swirlinglike Be

and it gives rise to an emergent toroidal moment Te like the
classical toroidal moment of a torus solenoid [13,45,46]. It
is found that the hopfion shows nonlinear nonreciprocal
translation and rotation with respect to the direction of Te

under an ac electrical current applied along Te. When the ac
current is applied perpendicular to Te, a nonlinear hopfion
Hall effect is identified where the hopfion also translates
and rotates with respect to Te. These nonlinear dynamics of
the hopfion are governed by the emergent toroidal moment
Te
z and the emergent magnetic octupole component Γe. On

the other hand, we also demonstrate that the hopfion gives
rise to nonreciprocal magnetoresistance and nonlinear Hall
effect in its transport properties of conduction electrons.
From these aspects, the emergent magnetomultipole serves
as a new fundamental quantity that characterizes the
nonlinear responses of spin textures.
The typical spin configuration of a hopfion S0ðrÞ with

QH ¼ 1 is shown in Fig. 1. The Hopf charge is defined as
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QH ¼ R
AeðrÞ ·BeðrÞdV, where Be

i ðrÞ ¼ 1
2
εijkS · ð∂jS ×

∂kSÞ is the emergent magnetic field and Ae is the
corresponding vector potential (Be ¼ ∇ ×Ae). This hop-
fion structure is axially symmetric around the z axis. The
associated emergent magnetic field exhibits a swirlinglike
structure as indicated by the red looped arrow in Fig. 1
Although the symmetry of the hopfion results in a vanish-
ing spatial-averaged emergent magnetic field hBeðrÞi ¼ 0,
it defines a finite emergent toroidal moment Te ¼ 1

2

R
r ×

BeðrÞdV ¼ Te
zẑ along the hopfion’s symmetry axis (z axis)

[45,46]. Note that Te appears as the integral of the Berry
connection over the spin texture [see Eqs. (S13) and (S14)
in the Supplemental Material [47] ]. As a result, nonrecip-
rocal responses related to Te are expected for the hopfion.
A previous study suggests that the current-driven dynam-

ics of hopfion are effectively described by three dynamical
modes: translation, rotation, and dilation [39]. For clarity,
here we mainly focus on the dynamics of the hopfion
related to the z axis, which is most relevant to the
nonreciprocal responses. At position r ¼ ðx; y; zÞ and time
t, the translation and rotation modes of the hopfion are
expressed as Sðr; tÞ ¼ S0½Ôðr − ZÞ�, where Z ¼ Zẑ char-
acterizes the translation of the hopfion along the z axis, and
Ô is the rotation operator. At infinitesimal rotation, for only
the rotation around z axis, we have Ô ≈ 1 − iθzLz, where
L̂i ¼ −iεijkrj∂k is the angular momentum operator and θz
is the rotation angle of hopfion around z axis. The dilation
of the hopfion can be expressed as Sðr; tÞ ¼ S0ðλrÞ and the
static equilibrium dilation λ0 ¼ 1 at the initial state.
Based on these dynamical modes, a glance at the

dynamics of the hopfion along its symmetry axis can be
deduced from the spin’s Berry phase term of the
Lagrangian [6,50,51] LBP ¼

R ð1 − cos θÞ _ϕdV, where θ
and ϕ are the polar and azimuthal angle of the localized

spin S with unit length. The variation of the spin’s Berry
phase term δLBP ¼

R
S · δS × _SdV can be expressed in

terms of the slowly varying dynamical modes of the
hopfion after integrating out the spin configuration,

δLz
BP ¼ ð−Te

z
_Z þ Γe _θzÞδλ; ð1Þ

where Te
z is the emergent toroidal moment and Γe ¼R ½ðx2 þ y2ÞBe

z − xzBe
x − yzBe

y�dV is an emergent magnetic
octupole component of the hopfion [52,53]. In Eq. (1), the
translation and rotation are coupled to the dilation via Te

z
and Γe rather than the emergent magnetic field, whose
spatial average vanishes for the hopfion. This distinguishes
the dynamics of the hopfion from other previously studied
TSTs in which the dynamical modes (e.g., longitudinal and
transverse motion) are coupled via the gyrovector (total
emergent magnetic flux of the spin texture) [1,6,54–58].
In principle, the velocity coupled with the toroidal moment
can generate nonreciprocal effects [18,59], and thus the
nonreciprocal dynamics of the hopfion is also expected
from the coupled dynamical modes.
To carefully check the nonreciprocal dynamics of the

hopfion, spin dynamics simulations were performed.
A magnetic hopfion stabilized in a frustrated magnet is
employed as the initial state. The corresponding model
Hamiltonian is H ¼ −

P
hi;ji JijSi · Sj, where the summa-

tion of the exchange interaction is extended up to fourth
nearest neighbor on a cubic mesh [47]. The presence of a
hopfion spontaneously breaks the inversion symmetry of
this system.
The spin dynamics are calculated by solving the Landau-

Lifshitz-Gilbert (LLG) equation with the spin transfer
torque (STT) terms [60–62]:

dS
dt

¼ −γ0S ×Heff þ
α

S
S ×

dS
dt

þ pa3

2eS
ðj · ∇ÞS

þ pa3β
2eS2

ðj · ∇ÞS × S: ð2Þ

Here γ0 is the gyromagnetic ratio, α is the damping
constant, p is the spin polarization, a is the lattice constant,
andHeff is the effective magnetic field. S is the spin length,
which is fixed to be 1 for simplicity. The effects of STT are
described by the last two terms in Eq. (2), where j is the
current density and β quantifies the nonadiabaticity of
the STT.
Typical results of the hopfion dynamics under an ac

driving current jz ¼ j sinðωtÞ applied along the z axis are
summarized in Fig. 2. As shown in the snapshots [Fig. 2(a)]
within a single driving period, for the first (second) half of
the period with positive (negative) applied current, the
hopfion moves along the current direction with a clockwise
(counterclockwise) rotation and an expansion (shrinkage).
Interestingly, after each cycle, the hopfion gains a net
translation and rotation. Snapshots after multiple cycles

FIG. 1. Schematic view of a QH ¼ 1 magnetic hopfion, its
emergent magnetic field (Be), and the corresponding emergent
toroidal moment (Te). The half torus represents the equispin
surface with Sz ¼ 0. The rectangle plane shows the cross-
sectional view of the hopfion onto the yz plane, which includes
a skyrmion and antiskyrmion pair. In the color scheme, the black
color in the core of the torus indicates Sz ¼ −1 and the white
color in the background indicates Sz ¼ 1. The color wheel stands
for in-plane spin directions.
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with more pronounced net translation and rotation are
shown in Fig. 2(b) for clarity (also see movie for the
nonreciprocal dynamics in the Supplemental Material
[47]). The steady-state ac dynamics plotted in Figs. 2(c)
and 2(d) also show that a net translation and rotation are
associated with the oscillating dynamics and they increase
with time in a linear manner. Therefore, the hopfion
possesses nonreciprocal translation and rotation under an
ac driving current. On the other hand, the size of hopfion d
oscillates around an equilibrium value [Fig. 2(d) inset] so
that the steady-state ac dynamics can be sustained. The
current density dependences of the hopfion’s net velocity v
and net angular velocity _θ are plotted in Figs. 3(a) and 3(c).
The quadratic dependence on the current density suggests a
nonlinear nonreciprocal dynamics of the hopfion.
To better understand this nonlinear nonreciprocal

dynamics, we derive the corresponding equation of motion
via the generalized Thiele’s approach based on the dynami-
cal modes of the hopfion [39,56,63]. Other than the
translation, rotation, and dilation of the hopfion, it is
necessary to take into account two additional effects in
order to capture the nonreciprocal dynamics. First, there is
always an energy change associated with the dilation of the
hopfion. Although this energy change can be ignored in
describing the linear dc dynamics, it is quite essential here

for generating the nonlinear nonreciprocal dynamics. The
formation of the hopfion requires a minimum number of
spins and it assigns an energy limit bounded with the
shrinking of hopfion. Hence, the energy of the hopfion is
asymmetric with respect to the dilation (expansion and
shrinkage) and can be effectively described by an anhar-
monic potential E ¼ 1

2
mðλ − 1Þ2 þ 1

6
χðλ − 1Þ3 (for more

details, see Supplemental Material [47]). In addition, the
dilation also leads to an effective field Hλ ¼ ðζ=μsÞS0 ×
½ðλ − 1Þr · ∂r�S0 acted on the hopfion, where μs is the
magnetic moment and ζ is a phenomenological parameter
similar to m and γ. These two factors associated with the
dilation of the hopfion are key ingredients for under-
standing the nonreciprocal dynamics of the hopfion beyond
the linear response regime.
Based on these dynamical modes, the equations of

motion for the hopfion are obtained as

−Te
z
_λþαKRR

_ZþαKRΘ _θz ¼ βKRRξjz−
γ0ζ

μs
Te
zðλ−1Þ; ð3Þ

Γe _λþαKRΘ _ZþαKΘΘ _θz¼ βKRΘξjzþ
γ0ζ

μs
Γeðλ−1Þ; ð4Þ

Te
z
_Z−Γe _θzþαKλλ

_λ¼ ξTe
zjz−

γ0
μs
mðλ−1Þ− γ0

2μs
χðλ−1Þ2;

ð5Þ

with KRR ¼ R ð∂zSÞ2dV, KRΘ ¼ R
∂zS · ðx∂y − y∂xÞSdV,

KΘΘ ¼ R ½ðx∂y − y∂xÞS�2dV, and Kλλ ¼
R ðr · ∂rSÞ2dV.

By setting the current density jz ¼ j sinðωtÞ, these equa-
tions can be solved in the ac limit hierarchically with
respect to the order of j.

FIG. 2. Nonreciprocal dynamics of a magnetic hopfion driven
by a sinusoidal-type ac current applied along the z axis. (a) Snap-
shots of the hopfion dynamics within a single driving cycle.
(b) Snapshots of the hopfion dynamics showing clear net trans-
lation and rotation after 10 and 20 driving cycles. (c) and (d) show
the translation and rotation of the ac hopfion dynamics. Inset of
(d) also shows the change of the hopfion’s size over time.

FIG. 3. Current density and (β=α − 1) dependence of the
hopfion’s net velocity [(a) and (b)] and net angular velocity
[(c) and (d)]. Inset in (a) and (c) is the corresponding driving
frequency dependence. Blue and red dots are simulation results.
Black lines represent the j2 fitting in (a) and (c), the ð1=ω2Þ fitting
in the inset of (a) and (c), and the ðβ=α − 1Þ2 fitting in (b) and (d),
respectively. The ac current is applied along the z axis.
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We then solve the dynamical modes as _Z ≈ _Z1ðjÞþ
_Z2ðj2Þ, _θz ≈ _θz1ðjÞ þ _θz2ðj2Þ, and λ ≈ λ0 þ λ1ðjÞ þ λ2ðj2Þ
up to the second order of j (for details of the solution, see
Supplemental Material [47]). While the first order solutions
(with j linear terms) only contain oscillating dynamics,
their second order solutions (with j2 terms) include non-
oscillating terms, i.e., the terms related to the nonreciprocal
dynamics. By further imposing the symmetry of the
hopfion, the following simplified dependences can be
obtained [47]

_Zdc
2 ∼

1

ω2
Te
z

�
β

α
− 1

�
2

j2; ð6Þ

_θdcz2 ∼ −
1

ω2
Γe

�
β

α
− 1

�
2

j2: ð7Þ

_Zdc
2 and _θdcz2 represent the nonlinear nonreciprocal trans-

lation and rotation of the hopfion. They have the same
dependence on the current density j, driving frequency ω,
and ½ðβ=αÞ − 1�. These dependences are also consistent
with the simulation results as shown in Fig. 3. The anomaly
in the frequency dependence might be due to some
resonances or other internal modes of the hopfion, which
are difficult to capture using the current formalism.
Next, we discuss the nonlinear hopfion responses under

an ac current applied perpendicular to the direction of Te
z

(e.g., along the x axis). A previous study suggests the dc
hopfion dynamics under an in-plane current include a
rotation of the hopfion plane, which is equivalent to a
rotation of Te

z [39]. Therefore, although the current and Te
z

are initially perpendicular to each other, as time increases,
the current component along Te

z develops and nonlinear
dynamics of the hopfion are still expected.
The simulation results for an ac current applied along the

x axis are shown in Fig. 4. While the hopfion oscillates
along the x axis, the net translation and rotation are still
bounded with the z axis. Hence, the hopfion moves
perpendicular to the applied ac current direction, which
is a nonlinear hopfion Hall effect. Moreover, the current
density dependence, frequency dependence, and ðβ=αÞ
dependence of the hopfion’s net velocity and angular
velocity have also been checked, which all agree well with
the analytical results (see Supplemental Materials [47]).
The equation of motion [Eq. (6) and Eq. (7)] indicates

that Te
z and Γe characterize the nonlinear dynamics of

hopfion. The nonreciprocities of _Zdc
2 and _θdcz2 are determined

by Te
z and Γe, respectively. Therefore, it is possible to

control the nonlinear dynamics of hopfion by manipulating
its spin configuration (e.g., switch the chirality or polarity).
Although both the translation and rotation of the hopfion
show nonlinear responses, the corresponding symmetries
are not the same. Te

z breaks both T and I . As a result, the
velocity of the hopfion reverses its sign upon T and I
operation but is invariant under IT operation [Fig. 5(a)].

On the other hand, the rotation of the hopfion is determined
by Γe, a parity-even emergent magnetomultipole. So the net
rotation of the hopfion reverses its sign upon T or IT only
[Fig. 5(b)].
Finally, to facilitate a more complete understanding, we

study the nonlinear electron transport effects induced by a
hopfion, which is effectively the counterpart of the STT
effect. The second-order current density in response to the
external electric field E is defined as

j2;a ¼ χabcEbEc ð8Þ

where χabc is the second-order conductivity tensor. By
considering a double exchange model (in which the
itinerant electrons are coupled to the localized spins via
the exchange coupling) [64,65], χabc can be obtained by
solving the semiclassical Boltzmann equation [66–68] (for
details of the derivation, see Ref. [47]). For the hopfion spin
texture studied here (Te ¼ Te

z ẑ), three typical second-order
conductivity components χzzz=2 ¼ χzxx ¼ χzyy ¼ χ ∝ Te

z

are obtained (detailed solutions can be found in [47]).
So the emergent toroidal moment of the hopfion induces
two types of nonlinear responses. χzxx and χzyy characterize
a nonlinear Hall effect and χzzz characterizes a nonrecip-
rocal transport, both along the direction of Te

z . These
nonlinear transport effects are consistent with the nonlinear
spin dynamics of the hopfion.
Our results reveal the vital role of the emergent magneto-

multipoles in determining the nonlinear spin dynamics and

FIG. 4. Nonlinear hopfion Hall effect under an ac current
applied along the x axis. (a) The translation of ac hopfion
dynamics along different axes. (b) The ac rotation dynamics
of the hopfion around the z axis. Inset of (b) shows the schematic
of the nonlinear hopfion Hall effect.

FIG. 5. Nonreciprocal translation (a) and rotation (b) for differ-
ent symmetry operations on the hopfion configuration.
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nonlinear electrical transports related to a magnetic hop-
fion. We anticipate the hopfions in other physical systems
may also show nonlinear responses in a similar manner as
the vector field itself breaks at least the inversion symmetry
[69–72]. As an example, we demonstrate the nonlinear
nonreciprocal dynamics of a hopfion stabilized in a typical
chiral magnet with conical background (see Supplemental
Materials [47]). In addition to hopfion, the emergent
magnetomultipoles can also be applied to other TSTs in
both two- and three-dimensional systems and can be
engineered by tailoring different kinds of TSTs. This
Letter also provides an alternative working principle for
the potential implementations of a hopfion in 3D spintronic
devices [25,28].
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