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Bound state in a continuum (BIC) is a spatially confined resonance with its energy embedded in a
continuous spectrum of propagative modes, yet their coupling is prohibited. In this Letter, we report the
discovery of a generic non-Hermitian phenomenon that we call an “extended state in a localized
continuum” (ELC). As the name suggests, the ELC is the inversion of the BIC—a single extended state
embedded in a continuous spectrum entirely consisting of localized modes, and its emergence rests in the
interplay between the BIC and the non-Hermitian skin effect (NHSE). Herein, the BIC is a zero-energy
corner mode that spectrally overlaps with a bulk band in a Hermitian kagome lattice. The ELC emerges
with the introduction of the NHSE in a particular way, such that it turns all the bulk states into corner skin
modes and simultaneously delocalizes the corner mode. We experimentally realize the ELC using an active
mechanical lattice. Our findings not only demonstrate the rich potential of the NHSE but may also spark
new wave-based applications.
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Introduction.—Bound state in a continuum (BIC) is a
localized state that spatially and spectrally overlaps with a
continuum of extended states but does not hybridize with
any of them [1,2]. BICs ubiquitously appear in a wide range
of physical systems, including quantum dots [3–5], and
classical waves [6–13]. They have led to high-performance
applications, such as nonlinear optics [14–16], sensing
[17–19], filtering [20], and lasers [21–24]. The unique
characteristics of BICs are enabled by either incompatible
symmetries or by accidental destructive interferences
among radiative or hybridization channels [2]. In particular,
by virtue of Hilbert-space separability or geometric sym-
metry, topological or defect modes can be tuned to
spectrally overlap with a band of extended bulk modes
while maintaining their localized characteristics, thus
becoming BICs [25–28].

In a separate realm, the development of non-Hermitian
formalism has fundamentally changed our understanding
of open systems [29,30]. It has not only brought about new
analytical tools, which enabled a kaleidoscope of revolu-
tionary applications in optics, photonics, and classical
waves [31,32], but also broken new grounds for topological
physics [33,34]. Specifically, the complex spectrum gives
rise to spectral topology [35]. An important consequence is
the non-Hermitian skin effect (NHSE) [36–40], which
causes the bulk states in an open lattice to become skin
modes localized at boundaries. The NHSE has been
realized in classical wave systems [41–44], electric circuits
[45], and quantum walks [46,47]. Recently, it was dis-
covered that the NHSE can also modify the wave functions
of topological modes by delocalization [48–51] or by
imposing further spatial confinement [51–53].

In this Letter, we report the discovery and experimental
realization of a new phenomenon, named “an extended
state in a localized continuum” (ELC). The emergence of
the ELC rests in the confluence of the BIC and the NHSE.
Our system is based on a 2D kagome rhombic lattice
possessing a BIC—a corner mode pinned at zero energy
[54–58] and embedded in a continuum of extended bulk
modes. By introducing specific nonreciprocal hopping, the
NHSE counters the spatial exponential decay of the zero
mode and delocalizes it into a fully extended state. The
extended zero mode remains spectrally embedded in the
continuum band, in which all modes are skin modes
collapsing toward a corner due to the NHSE. In other
words, the ELC is a BIC inverted by the NHSE.
Theoretical model.—Figure 1(a) shows a non-Hermitian

kagome lattice. The Hamiltonian under the periodic boun-
dary conditions (PBCs) reads

hðkÞ

¼

2
64

0 t1þt2e−ik·a1 t1þt2e−ik·a2

ðt1þε12Þþt2eik·a1 0 t1þt2e−ik·ða2−a1Þ

ðt1þε13Þþt2eik·a2 t1þt2eik·ða2−a1Þ 0

3
75;

ð1Þ

where k ¼ ðkx; kyÞ is the Bloch wave vector, a1 ¼ ð1; 0Þ
and a2 ¼ ð1=2; ffiffiffi

3
p

=2Þ are the primitive vectors, t1 and t2
are the hopping coefficients, ε12 and ε13 are the nonrecip-
rocal hopping coefficients between sites 1, 2 and sites 1, 3.
When ε12 ¼ ε13 ¼ 0, Eq. (1) is Hermitian and the spectrum
under the PBC is shown in Fig. 1(b), in which we set
t1 ¼ −0.73 and t2 ¼ −0.97. Model (1) possesses C3v and a
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generalized chiral symmetry [55]. Under an open boundary
condition (OBC), an equilateral-rhombic lattice (280 sites)
sustains a zero mode [54], as shown in Fig. 1(c). The wave
function of the zero mode is analytically solvable

jψH
zeroi ¼ N

X
ðm;nÞ

ð−t1=t2Þmþnc†
1;ðm;nÞj0i; ð2Þ

where j0i is a zero vector, c†
1;ðm;nÞ is a creation operator at

site 1 in the unit cell index by ðm; nÞ, with the cell at the
lower-left corner as (0,0), and N is a normalization factor.
From Eq. (2) it is readily apparent that the wave function of
the zero mode is nonzero only at sites 1 and is exponentially
localized at the lower-left corner. Moreover, the zero mode
is spectrally embedded in a bulk band. Figure 1(c) also
plots the averaged distribution of all bulk modes in the
second band, i.e., ψ̄ ¼ ð1=NÞPN

i jψ ij2, where N is the
number of the corresponding bulk modes. These observa-
tions are a clear indication that the zero mode is a BIC [55].
The system is non-Hermitian when ε12 and (or) ε13 in

Eq. (1) are nonzero. We choose a constant nonreciprocal
hopping, that is ε12 ¼ ε13 ¼ ε. In this case, the PBC
spectrum is complex and it forms spectral areas in the
complex plane, as shown in Fig. 1(d) for ε ¼ −0.1. Owing
to the nonreciprocal hopping, the NHSE emerges and
collapses the bulk modes toward the boundaries (corners)
under the OBC. The OBC spectra of the rhombic lattice
are plotted in Fig. 1(e) as a function of ε. Two important

observations are made: the spectrum remains real due to
the pseudo-Hermiticity of the OBC Hamiltonian [59], and
the zero mode exists for all ε. When ε ≠ 0, the C3 and
the reflection symmetry that maps site 1 to site 2 and site 1
to site 3 are broken. However, the reflection symmetry
mapping site 2 to site 3 remains intact and the generalized
chiral symmetry is also preserved. The wave function of the
zero mode in the non-Hermitian rhombic lattice is given by

jψNH
zeroi ¼ N 0 X

ðm;nÞ
½−ðt1 þ εÞ=t2�mþnc†

1;ðm;nÞj0i: ð3Þ

Clearly, it is tunable by the non-Hermitian parameter ε, as
shown in the upper panels of Figs. 1(f)–1(h). For a positive
ε, jψNH

zeroi is even more localized with a shorter decay length
compared to jψH

zeroi. In this case, all bulk modes are skin
modes localized at the lower-left corner [Fig. 1(f)]. When
ε < 0, the bulk modes congregate at the upper-right corner,
yet the zero mode is seen to delocalize [Fig. 1(g)]. It
becomes decay free across the entire lattice at a critical
value εc ¼ t2 − t1 ¼ −0.24 [Fig. 1(h)]. (There exists
another critical value at ε0c ¼ −t2 − t1 ¼ 1.7 [60]). Note
that the OBC spectrum remains entirely real, and the zero
mode is embedded in the continuum band. Thus, we have
arrived at a new phenomenon that a band of corner-
localized skin modes forms a continuum, in which a single
fully extended zero mode is embedded [Fig. 1(h)]. In other
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FIG. 1. (a) The schematic of a non-Hermitian kagome lattice. The black hexagon encircles a unit cell. (b) The spectrum of a Hermitian
kagome lattice under the PBC. (c) Left panel: the OBC spectrum of a Hermitian rhombic lattice. The blue dot denotes the zero mode.
Right panels: the wave function of the zero mode and the averaged distribution of the bulk modes in the second bulk band. (d) The PBC
(light blue) and OBC (orange) spectra of the non-Hermitian kagome lattice. (e) The OBC spectra of the non-Hermitian rhombic lattice
and its dependence on ε. (f)–(h) The wave function of the zero mode (upper panels) and the averaged wave function of the bulk modes
(bottom panels) at (f) ε ¼ 0.2, (g) ε ¼ −0.18, and (h) ε ¼ εc ¼ −0.24.
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words, the BIC is turned into an ELC when introducing
the NHSE.
Experiments.—We use a lattice of rotational oscillators to

realize the EIC. A typical oscillator is shown in Fig. 2(a),
which consists of a brushless dc motor (LDPOWER 2804)
with a 124-mm metallic arm anchored by two tensioned
springs such that there is only one rotational degree of
freedom. The main arm can accommodate additional
weight loading for adjusting the moment of inertia, by
which the resonant frequency is tuned to 13 Hz. (This is the
frequency for the “zero energy” in the theoretical model.)
Stacked on top of the main arm are two additional arms, on
which springs that connect neighboring sites are attached,
such that the kagome lattice is built, as shown in Figs. 2(b)
and 2(c). To realize the nonreciprocal hopping, electronics
[Fig. 2(c)] are used to measure the instantaneous angular
displacement θ1ðtÞ at all sites 1 in real time. The results are
used as feedback to generate instantaneous torques at sites
2 and 3 in the same unit cell, τ2ðtÞ ¼ τ3ðtÞ ¼ αθ1ðtÞ, where
α is a constant that tunes the magnitude of the nonreciprocal
hopping. More details about the experimental setup are
presented in Ref. [60].
The experimental lattice has 65 oscillators. We first set

ε ¼ 0 and excite a single oscillator in the bulk with a signal
covering 6–20 Hz. The response spectrum shows a dip at
12.3 Hz which indicates a band gap, separating two bulk
bands [Fig. 3(a)]. We then apply actuation on the oscillator
at the lower-left corner and the corresponding response
spectrum is displayed as the orange curve. A sharp peak is
seen at 13.3 Hz, overlapping with the higher bulk band.
The finite linewidth of the peak is due to dissipation in the

lattice. The quality factor can be much higher if the
dissipation is reduced. The steady-state vibration profile
measured at all sites at this frequency is clearly localized at
the lower-left corner [Fig. 3(f)], which is in good agreement
with the response profile computed using Green’s function
[Fig. 3(c)]. This realizes the BIC in the Hermitian kagome
lattice.
We next switch on the nonreciprocal hopping and set

ε ¼ −0.26 (retrieved value, close to the critical value εc).
The NHSE is observed, as demonstrated in the
Supplemental Material video [60]. The response spectra
for the excitation in the bulk and at the lower-left corner are
shown in Fig. 3(b). Both spectra are similar to their
Hermitian counterparts. However, when excited at the
lower-left corner, the vibration profile at 13.3 Hz is no
longer localized at the corner, but occupies the entire lattice
[Fig. 3(g)]. This signifies that the zero mode is entirely
delocalized and has become an extended mode. There is a
slight drop in vibrational magnitudes away from the source,
which is attributed to the inevitable presence of dissipation
in the lattice. The dissipation also broadens the responses of
all modes, such that the monochromatic excitation at
13.3 Hz can also weakly excite nearby bulk modes.
These modes also contribute to the overall vibration profile
that is shown in Fig. 3(g). This is also verified by the good
agreement between the measured and the theoretically
calculated results [Fig. 3(d)], in which the dissipation is
accounted for in Green’s function. We also show in
Ref. [60], that upon decreasing the dissipation, it is indeed
possible to excite only the extended zero mode with the
excitation at the lower-left corner.
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FIG. 2. (a) The schematic drawing of the rotational resonator, whose resonance plays the role of the on-site orbital. (b) The schematic
drawing of a unit cell of the non-Hermitian kagome lattice. Only the short arms supporting the connections between neighboring sites
are shown. τ2ðtÞ and τ3ðtÞ are the instantaneous torques applied on site 2 and site 3. (c) A photo of the mechanical lattice. The tension
springs realizing the hoppings t1 and t2 are colored according to (b). θ1ðtÞ is the instantaneous angular displacement of site 1. The white
box marks the unit cell.
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Next, we place a single source in the bulk and away from
the mirror axis [Fig. 4(b)] to excite both the symmetric
and antisymmetric skin modes. The spectral sum of the
responses at each site is then obtained

Pν;ðm;nÞ ¼
Z

f2

f1

jAν;ðm;nÞðfÞj2df; ð4Þ

where Aν;ðm;nÞðfÞ is the response of the site ν of the unit cell
ðm; nÞ at frequency f, with ν ¼ 1, 2, 3, and f1 ¼ 6 Hz and
f2 ¼ 20 Hz. The response ratio between the non-Hermitian
and Hermitian lattices ξν;ðm;nÞ ¼ PNH

ν;ðm;nÞ=P
H
ν;ðm;nÞ is shown

in Figs. 3(h). Figure 3(e) shows the theoretical result. These
results clearly show that when the nonreciprocal hopping is
in effect, all bulk modes become skin modes that localize at
the upper-right corner. From these experimental data, it
becomes clear that we have successfully verified the
existence of the ELC in our mechanical lattice.
Discussion and conclusion.—The ELC is the pheno-

menological inversion of the BIC. It is the unique conse-
quence of the interplay between the BIC and the NHSE.
The exponential decay of the corner mode is exactly
countered by the spatial amplification caused by the
NHSE [49], resulting in an extended state. Meanwhile,
the bulk modes that form the continuum band become
corner-localized skin modes (the localization characteristic
is more evident in a sufficiently large lattice). Unlike the
BIC, the ELC is one of the non-Hermitian eigenmodes,
which are generically skewed and follow biorthogonality
[63], that is hψL

i jψR
j i ¼ δij, where i, j are the mode indices,

ψL
i and ψR

j are bilinearly normalized left and right
eigenvectors [64,65]. The biorthogonal inner products of
the ELC and all the other skin modes, denoted
χLR ≡ hψL

i jψNH;R
zero i, are indeed vanishing as shown in

Fig. 4(a). This means that the stable existence of the
ELC is a consequence of biorthogonality—an exclusively
non-Hermitian property. The inner products using only the
right eigenvectors, denoted χRR ≡ hψR

i jψNH;R
zero i, can indeed

be nonzero [Fig. 4(b)]. However, intriguingly, a significant
portion of the bulk modes still gives a vanishing χRR.
Futher examination reveals that the corresponding modes
are all antisymmetric about the mirror axis of the rhombic
lattice, and they are incompatible with the extended zero
mode that is symmetric. In other words, instead of being a
generic phenomenon, the vanishing of χRR relies on the
specific spatial symmetry Cs of the OBC lattice.
The forms of the ELC are diverse and tailorable. For

example, by using a triangular lattice, the ELC is an
extended state in a continuum of edge-localized skin modes
[60]. It is also straightforward to realize an ELC in different
types of lattices. An additional example based on a 2D non-
Hermitian Su-Schrieffer-Heeger lattice is presented in
Ref. [60] where the Hermitian BIC is also a topological
mode. These desirable characteristics mean the ELC can
potentially be tailored to adapt to different application
scenarios. Because the physical mechanisms for the BICs
and the NHSE are universal, this phenomenon can emerge
in other types of systems, such as photonics, electromag-
netism, acoustics, and in the continuous models which are
out of the tight-binding descriptions. Recent work showing
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FIG. 3. (a) and (b) The response spectra of the 65-site rhombic lattice with the excitation placed inside the bulk and at the lower-left
corner when (a) ε ¼ 0 and (b) ε ¼ −0.26. (c) and (d) The theoretical and (f) and (g) experimental steady-state response fields when the
lattice is excited at the lower-left corner at 13.3 Hz. The results in (c) and (f) correspond to the Hermitian case with ε ¼ 0, and the results
in (d) and (g) are at ε ¼ −0.26. (e) The theoretical and (h) experimental response ratio of the non-Hermitian and Hermitian lattices. The
magenta box in (c)–(h) marks the position of the source. The size of the circles in (c), (d), (f), and (g) represents the response magnitude.
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the possibility of realizing nonreciprocity by loss [66]
suggests the potential of obtaining ELC in completely
passive systems.
We remark that, even in the presence of the NHSE, in 1D

lattices, it remains possible for a small number of bulk
modes to be extended [43,67]. Such states owe their
existence to the bipolar NHSE, which occurs when the
energy of an OBC eigenstate exactly coincides with the
PBC spectrum in the complex plane. Hence, the OBC bulk
modes can still converge to the PBC eigenmodes. However,
the very mechanism for such a “Bloch-wave-like” state to
exist also prevents it from overlapping with other skin
modes. Thus, it cannot become an ELC.
In summary, the ELC demonstrated here exemplifies the

rich possibilities that lie within the confluence of generic
wave physics and non-Hermitian physics. We envisage the
ELC to bring intriguing twists to wave-based applications,
especially BIC-based devices. For instance, quasi-BIC
lasers [21,68] can benefit from the extended mode profile
of the ELC, such that surface emission may be attainable.
BIC-based sensors [18,19] can also take advantage of the
increased detection area, thereby boosting their efficiency.
The ELC may also boost the energy capacity for gapless
photonic crystal fibers relying on BIC [69].
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B. Kanté, Lasing action from photonic bound states in
continuum, Nature (London) 541, 196 (2017).

[22] Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, Cherenkov
Radiation from Photonic Bound States in the Continuum:
Towards Compact Free-Electron Lasers, Phys. Rev. Appl.
10, 064026 (2018).

[23] B. Midya and V. V. Konotop, Coherent-perfect-absorber and
laser for bound states in a continuum, Opt. Lett. 43, 607
(2018).

[24] Y. Yu, A. Sakanas, A. R. Zali, E. Semenova, K. Yvind, and
J. Mørk, Ultra-coherent Fano laser based on a bound state in
the continuum, Nat. Photonics 15, 758 (2021).

[25] Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, Topo-
logical Subspace-Induced Bound State in the Continuum,
Phys. Rev. Lett. 118, 166803 (2017).

[26] Z.-G. Chen, C. Xu, R. Al Jahdali, J. Mei, and Y. Wu, Corner
states in a second-order acoustic topological insulator as
bound states in the continuum, Phys. Rev. B 100, 075120
(2019).

[27] Z.-G. Chen, L. Wang, G. Zhang, and G. Ma, Chiral
Symmetry Breaking of Tight-Binding Models in Coupled
Acoustic-Cavity Systems, Phys. Rev. Appl. 14, 024023
(2020).

[28] Z.-G. Chen, W. Zhu, Y. Tan, L. Wang, and G. Ma, Acoustic
Realization of a Four-Dimensional Higher-Order Chern
Insulator and Boundary-Modes Engineering, Phys. Rev.
X 11, 011016 (2021).

[29] C. M. Bender, Making sense of non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[30] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian Physics,
Adv. Phys. 69, 249 (2020).

[31] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian pho-
tonics based on parity–time symmetry, Nat. Photonics 11,
752 (2017).

[32] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time
symmetry and exceptional points in photonics, Nat. Mater.
18, 783 (2019).

[33] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[34] K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and
exceptional-point geometries, Nat. Rev. Phys. 4, 745 (2022).

[35] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Sym-
metry and Topology in Non-Hermitian Physics, Phys. Rev.
X 9, 041015 (2019).

[36] S. Yao and Z. Wang, Edge States and Topological Invariants
of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803
(2018).

[37] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal Bulk-Boundary Correspondence
in Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808
(2018).

[38] K. Yokomizo and S. Murakami, Non-Bloch Band Theory of
Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404
(2019).

[39] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato,
Topological Origin of Non-Hermitian Skin Effects, Phys.
Rev. Lett. 124, 086801 (2020).

[40] K. Zhang, Z. Yang, and C. Fang, Correspondence between
Winding Numbers and Skin Modes in Non-Hermitian
Systems, Phys. Rev. Lett. 125, 126402 (2020).

[41] A. Ghatak, M. Brandenbourger, J. van Wezel, and C.
Coulais, Observation of non-Hermitian topology and
its bulk–edge correspondence in an active mechanical
metamaterial, Proc. Natl. Acad. Sci. U.S.A. 117, 29561
(2020).

[42] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A.
Stegmaier, M. Greiter, R. Thomale, and A. Szameit,
Topological funneling of light, Science 368, 311 (2020).

[43] L. Zhang et al., Acoustic non-Hermitian skin effect
from twisted winding topology, Nat. Commun. 12, 6297
(2021).

[44] X. Zhang, Y. Tian, J.-H. Jiang, M.-H. Lu, and Y.-F. Chen,
Observation of higher-order non-Hermitian skin effect, Nat.
Commun. 12, 5377 (2021).

[45] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T.
Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M.
Greiter, and R. Thomale, Generalized bulk–boundary cor-
respondence in non-Hermitian topolectrical circuits, Nat.
Phys. 16, 747 (2020).

[46] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P.
Xue, Non-Hermitian bulk–boundary correspondence in
quantum dynamics, Nat. Phys. 16, 761 (2020).

[47] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue,
Observation of Non-Bloch Parity-Time Symmetry and
Exceptional Points, Phys. Rev. Lett. 126, 230402 (2021).

[48] S. Longhi, Non-Hermitian gauged topological laser arrays,
Ann. Phys. (Amsterdam) 530, 1800023 (2018).

[49] W. Zhu, W. X. Teo, L. Li, and J. Gong, Delocalization of
topological edge states, Phys. Rev. B 103, 195414 (2021).

[50] W. X. Teo, W. Zhu, and J. Gong, Tunable two-dimensional
laser arrays with zero-phase locking, Phys. Rev. B 105,
L201402 (2022).

[51] W.Wang, X. Wang, and G. Ma, Non-Hermitian morphing of
topological modes, Nature (London) 608, 50 (2022).

[52] C. H. Lee, L. Li, and J. Gong, Hybrid Higher-Order Skin-
Topological Modes in Nonreciprocal Systems, Phys. Rev.
Lett. 123, 016805 (2019).

[53] D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun,
and X. Zhang, Observation of hybrid higher-order skin-
topological effect in non-Hermitian topolectrical circuits,
Nat. Commun. 12, 7201 (2021).

PHYSICAL REVIEW LETTERS 129, 264301 (2022)

264301-6

https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.3390/s17081861
https://doi.org/10.3390/s17081861
https://doi.org/10.1364/OE.27.018776
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1038/nature20799
https://doi.org/10.1103/PhysRevApplied.10.064026
https://doi.org/10.1103/PhysRevApplied.10.064026
https://doi.org/10.1364/OL.43.000607
https://doi.org/10.1364/OL.43.000607
https://doi.org/10.1038/s41566-021-00860-5
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevB.100.075120
https://doi.org/10.1103/PhysRevB.100.075120
https://doi.org/10.1103/PhysRevApplied.14.024023
https://doi.org/10.1103/PhysRevApplied.14.024023
https://doi.org/10.1103/PhysRevX.11.011016
https://doi.org/10.1103/PhysRevX.11.011016
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1038/s42254-022-00516-5
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1126/science.aaz8727
https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/10.1038/s41467-021-25716-y
https://doi.org/10.1038/s41467-021-25716-y
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/10.1002/andp.201800023
https://doi.org/10.1103/PhysRevB.103.195414
https://doi.org/10.1103/PhysRevB.105.L201402
https://doi.org/10.1103/PhysRevB.105.L201402
https://doi.org/10.1038/s41586-022-04929-1
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1038/s41467-021-26414-5


[54] F. K. Kunst, G. van Miert, and E. J. Bergholtz, Lattice
models with exactly solvable topological hinge and corner
states, Phys. Rev. B 97, 241405(R) (2018).

[55] X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, Observa-
tion of higher-order topological acoustic states protected
by generalized chiral symmetry, Nat. Mater. 18, 113
(2019).

[56] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic
higher-order topological insulator on a kagome lattice, Nat.
Mater. 18, 108 (2019).

[57] A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J.
Bergholtz, and M. Bourennane, Corner states of light in
photonic waveguides, Nat. Photonics 13, 697 (2019).

[58] M. A. J. Herrera, S. N. Kempkes, M. B. de Paz, A. García-
Etxarri, I. Swart, C. M. Smith, and D. Bercioux, Corner
modes of the breathing kagome lattice: Origin and robust-
ness, Phys. Rev. B 105, 085411 (2022).

[59] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry:
The necessary condition for the reality of the spectrum of a
non-Hermitian Hamiltonian, J. Math. Phys. (N.Y.) 43, 205
(2002).

[60] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.264301 for the
realness of the OBC spectrum, extended zero mode in
the non-Bloch PT-broken phase, ELCs in different systems,
on the robustness issue of the ELC, the effect of dissipation,
experimental setup, skin-mode response at the zero mode’s
eigenfrequency and a supplemental video including the
demonstration of the NHSE and the steady-state vibration of

the localized and fully extended zero mode, which includes
Refs. [26,47,58,61,62].

[61] W. A. Benalcazar and A. Cerjan, Bound states in the
continuum of higher-order topological insulators, Phys.
Rev. B 101, 161116(R) (2020).

[62] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan,
Emergence, Coalescence, and Topological Properties of
Multiple Exceptional Points and Their Experimental Reali-
zation, Phys. Rev. X 6, 021007 (2016).

[63] W. D. Heiss, The physics of exceptional points, J. Phys. A
45, 444016 (2012).

[64] S. Weigert, Completeness and orthonormality in PT-
symmetric quantum systems, Phys. Rev. A 68, 062111
(2003).

[65] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A
47, 035305 (2014).

[66] S. Longhi, D. Gatti, and G. D. Valle, Robust light transport
in non-Hermitian photonic lattices, Sci. Rep. 5, 13376
(2015).

[67] F. Song, S. Yao, and Z. Wang, Non-Hermitian Topological
Invariants in Real Space, Phys. Rev. Lett. 123, 246801
(2019).

[68] M.-S. Hwang, H.-C. Lee, K.-H. Kim, K.-Y. Jeong, S.-H.
Kwon, K. Koshelev, Y. Kivshar, and H.-G. Park, Ultralow-
threshold laser using super-bound states in the continuum,
Nat. Commun. 12, 4135 (2021).

[69] F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G.
Raymer, Generation and photonic guidance of multi-octave
optical-frequency combs, Science 318, 1118 (2007).

PHYSICAL REVIEW LETTERS 129, 264301 (2022)

264301-7

https://doi.org/10.1103/PhysRevB.97.241405
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41566-019-0519-y
https://doi.org/10.1103/PhysRevB.105.085411
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.264301
https://doi.org/10.1103/PhysRevB.101.161116
https://doi.org/10.1103/PhysRevB.101.161116
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1103/PhysRevA.68.062111
https://doi.org/10.1103/PhysRevA.68.062111
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1038/srep13376
https://doi.org/10.1038/srep13376
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1038/s41467-021-24502-0
https://doi.org/10.1126/science.1149091

