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We report on nonlinear squeezing effects of polarization states of light by harnessing the intrinsic
correlations from a polarization-entangled light source and click-counting measurements. Nonlinear Stokes
operators are obtained from harnessing the click-counting theory in combination with angular-momentum-
type algebras. To quantify quantum effects, theoretical bounds are derived for second- and higher-order
moments of nonlinear Stokes operators. The experimental validation of our concept is rendered possible by
developing an efficient source, using a spectrally decorrelated type-II phase-matched waveguide inside a
Sagnac interferometer. Correlated click statistics and moments are directly obtained from an eight-time-bin
quasi-photon-number-resolving detection system. Macroscopic Bell states that are readily available with
our source show the distinct nature of nonlinear polarization squeezing in up to eighth-order correlations,
matching our theoretical predictions. Furthermore, our data certify nonclassical correlations with high
statistical significance, without the need to correct for experimental imperfections and limitations. Also, our
nonlinear squeezing can identify nonclassicality of noisy quantum states which is undetectable with the
known linear polarization-squeezing criterion.
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Introduction.—Squeezing plays a vital role as a funda-
mental quantum effect and fosters today’s development of
quantum technologies. Squeezed states of light are studied
on various platforms [1–5], harnessing their nonclassical
properties to advance the performance of imaging, sensing,
and information processing applications [6–11]. Among
the different ways squeezing can manifest itself, spin and
polarization squeezing of light are of particular interest
[12–15].
In classical (statistical) optics, polarization properties are

explained via Stokes parameters, visualized on the Poincaré
sphere. For quantum light, the operator counterparts to
Stokes parameters were established [16]. Similar to squeez-
ing in phase space, accessible via quadrature (i.e., field)
operators, the idea here is to assess squeezing in terms of
Stokes-operator fluctuations [17]. Different theoretical
techniques to quantify spin squeezing were proposed
[18–20], and a number of experiments have been per-
formed [21,22].
Experiments often employ second-order moments for

probing the quantum-classical boundary, not appreciating
the information content provided by higher-order correla-
tions; see, e.g., Ref. [23] for one exception. For quadrature
squeezing, higher-order effects have been considered
[24,25]. Indeed, for characterizing the quantum polariza-
tion of light, it was shown that higher-order polarization
properties are essential [26]. In addition, and beyond the
linear regime, it is exceedingly interesting to study

nonlinear quantum phenomena that are inaccessible via
simple linear functional dependencies alone [19]. However,
nonlinear quantum effects are hard to detect at best and
often simply unattainable.
The detection of complexly structured quantum light is

challenging. In particular, phase-sensitive measurements
typically require a well-defined external reference phase,
such as provided by the local oscillator in balanced homo-
dyne detection [27]. But, for polarization measurements,
interference properties of the two polarization components
suffice [16,17]. Still, such measurements commonly require
photon-number-resolution capabilities, which are gene-
rally not available. Consequently, pseudo-number-resolving
detection has been established to mitigate such limitations
[28–31]. Using the therefore developed click-counting
framework [32], moment-based criteria allow for detecting
nonclassical features, even with incomplete photon-number
information [33,34]. Nowadays, large systems of up to 128
time-bin-multiplexed detectors are available, allowing us to
explore macroscopic quantum correlations [35]. While first
theoretical attempts were made to combine click counting
with nonclassical polarization states [36], a full theoretical
description and an experimental demonstration were not
realized to date.
Polarization-entangled sources based on parametric

down-conversion have been successfully investigated
[37,38]. Yet, these experiments often solely exploit sin-
gle-photon components to produce entangled Bell and
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Greenberger-Horne-Zeilinger states [39] in a low-pump-
power approximation. Intrinsically, however, the down-
conversion process also leads to higher-order contributions.
And a full expansion yields a macroscopic Bell state [40],
i.e., a continuous-variable Einstein-Podolski-Rosen state,
whose quantum noise properties have been characterized in
terms of second-order, linear Stokes-operator fluctuations
[41]; however, nonlinear functional dependencies remain
unexplored.
We develop a nonlinear Stokes-operators formalism in

terms of click-counting theory. Based on this approach,
second- and higher-order moment-based inequalities are
derived that, when violated, certify nonclassical polariza-
tion states. We combine an efficient source of entangled
light with a click-counting detection unit for the exper-
imental verification of nonclassicality. A parametric down-
conversion source in a Sagnac loop [42] allows us to
produce macroscopic Bell states with higher-order photon-
number contributions and different polarization features,
including complete and partial polarization nonclassicality.
From the recorded click pattern, we then directly recon-
struct up to eighth-order moments for nonlinear Stokes
operators, characterizing nonlinear quantum polarization
effects with high statistical significance and without cor-
rections for measurement imperfections.
Theory.—We employ a detection scheme in which

incident light is split into N ¼ 8 bins of equal intensity,
each measured with a single-photon detector [28–31]. It
was shown that obtaining k nonvacuum signals, i.e., clicks,
is described by a positive operator-valued measure that
exhibits a binomial form in a normally ordered expansion,
Π̂k¼∶ðNkÞπ̂kð1̂− π̂ÞN−k∶ [32], with π̂¼ 1̂−∶expð−ηn̂=NÞ∶.
Therein, η, n̂, and ∶ � � � ∶ are the detection efficiency, the
photon-number operator, and the normal order symbol,
respectively. Importantly, this click-counting description is
different from the common Poisson form for a full photon-
number resolution, Π̂k ¼ ∶e−ηn̂ðηn̂Þk=k!∶þOð1=NÞ, only
slowly 1=N converging toward the photoelectric Poisson
model [32].
For the two quantized polarization components, the

linear representation is given in terms of Stokes operators.
(See, e.g., Refs. [43,44] for introductions.) That is, a wave-
plate-based transformation of, say, horizontal and vertical
photon numbers results in â†â ↦ ðŜ0 þ e · ŜÞ=2 and
b̂†b̂ ↦ ðŜ0 − e · ŜÞ=2, respectively. Therein, the Stokes-
operator vector is given by Ŝ ¼ ðâ†b̂þ b̂†â;−iâ†b̂þ ib̂†â;
â†â − b̂†b̂Þ, the total photon number reads Ŝ0 ¼ â†âþ
b̂†b̂, and the vector e ¼ ðsinϑ cosφ; sin ϑ sinφ; cosϑÞ cor-
responds to the measurement projection direction on the
Poincaré sphere. For the applied combination of quarter-
wave (QWP) and half-wave (HWP) plates, the relative
phase is φ ¼ argðρ�τÞ ∈ ½0; 2π½, the transmission coeffi-
cient is jτj ¼ cosϑ=2 (0 ≤ ϑ ≤ π), and the reflection
coefficient is jρj ¼ sinϑ=2.

In our scenario, however, the mean click number for the
two polarizations is hNπ̂Ai¼N(1−h∶exp½−ηðŜ0þe · ŜÞ=
ð2NÞ�∶i) and hNπ̂Bi¼N(1−h∶exp½−ηðŜ0−e·ŜÞ=ð2NÞ�∶i)
[33,36]. To characterize the polarization state, one typically
utilizes the difference photon number, â†â − b̂†b̂ ↦ e · Ŝ,
resembling a detection on Poincaré sphere along e.
Analogously, we here consider the mean difference of
clicks, given by the expectation value of

ŜNL ¼Nπ̂A−Nπ̂B¼ 2N∶exp
�
−

η

2N
Ŝ0

�
sinh

�
η

2N
e · Ŝ

�
∶:

ð1Þ

Importantly, this operator is a nonlinear function of Stokes
operators which includes a hyperbolic sine of the sought-
after projection e · Ŝ, and which also includes an exponen-
tial scaling with the total photon number (Ŝ0), accounting
for detector saturation. This nonlinear nature is an intrinsic
feature when combining modern click-counting theory with
angular-momentum algebras, superseding the aforemen-
tioned linear counterpart. Note that the limit N → ∞ yields
ŜNL ¼ e · ŜþOð1=NÞ, and Eq. (1) relates to single-mode
balanced homodyne detection with click counting [45].
Similarly to the difference, the total (i.e., summed) click-

number operator, mirroring the total photon number, reads

Ŝ0;NL ¼ Nπ̂A þNπ̂B

¼ 2N

�
1̂−∶ exp

�
−

η

2N
Ŝ0

�
cosh

�
η

2N
e · Ŝ

�
∶
�
; ð2Þ

and additionally depends on e · Ŝ, contrasting the linear
total photon number Ŝ0 without similar contributions; see
Ref. [46] for related considerations for homodyne
detection.
For determining polarization nonclassicality, we can now

use the known method of normally ordered matrices of
moments [47,48], applied here to nonlinear Stokes oper-
ators. The resulting matrix M ¼ ðh∶Skþl

NL ∶iÞk;l¼0;…;N=2
includes moments up to the Nth order and is positive
semidefinite for classical light, M ≥ 0 [33]. If, however,
M ≱ 0 applies, nonclassicality is certified. As one example,
we can consider the determinant of the principal leading
two-dimensional submatrix of M. Then, the second-order,
classical constraint reads

0≤
cl
det

� h∶Ŝ0NL∶i h∶Ŝ1NL∶i
h∶Ŝ1NL∶i h∶Ŝ2NL∶i

�
¼ h∶ðΔŜNLÞ2∶i; ð3Þ

with h∶Ŝ0NL∶i ¼ h1̂i ¼ 1. This inequality lower bounds the
normally ordered and nonlinear variance of ŜNL for classi-
cal polarization states by zero. It is also worth mentioning
that the elements of M can be directly expressed through
moments of π̂A and π̂B through Eq. (1) which we obtain
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from h∶π̂jAπ̂j
0
B∶i ¼

P
N
k¼j

P
N
l¼j0 ck;lðkjÞð lj0ÞðNj Þ−1ðNj0Þ−1 [34],

solely utilizing the actually measured joint click-counting
statistics ck;l.
In the Supplemental Material (SM) [49], we show that

our second-order nonlinear squeezing criterion (3) is more
noise resilient than its linear counterpart. This result is
obtained by considering polarization-entangled single pho-
tons with thermal background as examples which exhibit
no linear, but nonlinear squeezing. For instance, for N ¼ 8,
we can accept more than 50% more noise with our non-
linear Stokes formalism.
Experiment.—See Fig. 1(a) for the setup and Fig. 1(b) for

the click detection. See also SM [49] for additional details.
A periodically poled potassium titanyl phosphate

(PPKTP) waveguide is operated inside a Sagnac interfer-
ometer [42]. Bidirectional pumping efficiently generates
type-II parametric down-conversion in clockwise and
counterclockwise propagation directionwith non-negligible
higher-order contributions. The pump light is delivered from

a pulsed laser with 100 fs pulse duration and 774 nm central
wavelength. A folded 4f spectrometer is used to select a
narrow part of the pump spectrum, yielding pump pulses
with 1 ps duration. Our engineered waveguide source
generates spectrally decorrelated photon pairs independ-
ently in both directions. A HWP at a fixed angle, 45°, inside
the interferometer switches the polarization, ensuring that
pump and down-converted (i.e., signal and idler) photons
have identical polarizationwhen they recombine. Interfering
the resulting beams on the Sagnac polarizing beam splitter
(PBS) generates entangled light in two output modes. The
source performance is benchmarked with a visibility>96%
and a fidelity > 95% in the low-pump-power regime. The
phase in arm A is tuned with a 1550 nm Soleil-Babinet
compensator, labeled as phase controller in Fig. 1(a). HWP
andQWP combinations are used to perform arbitrary Stokes
measurements. Themeasurement PBSs project the state into
the two polarization modes and direct beams A and B to our
detection unit.
For click counting, the produced light is sent through

an eight-time-bin detection unit, Fig. 1(b). Our time-
multiplexed detector (TMD) consists of a series of three
50=50 beam splitters connected by delay fibers with
different lengths, resulting in a splitting into different time
bins [29,30]. Time bins are separated by 100 ns. Since two
light beams are coming from the setup, both inputs of one
TMD can be utilized in a delayed manner, allowing for a
resource-efficient characterization. A total of 16 time bins
for A and B are detected by two superconducting nanowire
single-photon detectors (SNSPDs), which have dead time
of 60 ns, much less than the bin separation. The repetition
rate of the experiment is reduced to 1 MHz to account for
the time delays introduced by the TMD detection scheme.
Results.—Relatively strong pumping (here, 100 μW, or

0.1 nJ per pulse) produces polarization-entangled states
with higher-order photon-number contributions. Our wave-
guide-based approach benefits from a high degree of spatial
confinement and, thus, produces bright quantum light, not
limited as bulk crystal sources that suffer spatial distortions,
e.g., Kerr lensing. The produced state after the phase
controller reads

jψi ¼ ð1 − jλj2Þ
X∞
m;n¼0

λmðeiϕλÞnjmi ⊗ jni ⊗ jni ⊗ jmi;

ð4Þ
with jλj < 1; the tensor products of number states are sorted
according to output arm and polarization as follows:
horizontal for A, vertical for A, horizontal for B, and
vertical for B. We specifically use the controller settings
eiϕ ¼ �1, defining macroscopic Bell states jψ�i [41]. That
name for the continuous-variable state (4) originates from
the two-photon subspace (i.e., mþ n ¼ 1) in which we
have an entangled two-qubit state—meaning that jψi ∼
jHi ⊗ jVi þ eiϕjVi ⊗ jHi for modes A and B, with the

(a)

(b)

FIG. 1. Setup outline. A 775 nm laser pumps the waveguide
source with a spectrally filtered pump width of 1 ps. Polarization-
entangled photon pairs are generated in the forward and back-
ward propagation in the Sagnac interferometer and separated with
a polarizing beam splitter (PBS). A phase controller allows us to
switch between symmetric and antisymmetric Bell states. Com-
binations of half-wave (HWP) and quarter-wave (QWP) plates
with a PBS yield arbitrary Stokes projections e · Ŝ on the Poincaré
sphere. Our time-multiplexed detector (TMD) is built from low-
loss fibers and 50=50 beam splitters. The resulting time-bin-
resolved photons in arms A and B are detected by two super-
conducting nanowire single-photon detectors (SNSPDs) with an
efficiency exceeding 80%.
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horizontal and vertical single-photon states jHi ¼ j1i ⊗
j0i and jVi ¼ j0i ⊗ j1i, respectively. (Note the symmetric
and antisymmetric exchange symmetry between A and B
for eiϕ ¼ �1.) By controlling the squeezing strength via λ,
one obtains entangled qubit and qudit states in the two-
photon and few-photon regime, jλj ≈ 0, and macroscopic
Bell states for high pump powers, i.e., higher jλj.
Using a two-mode polarization tomography, we collect

data for 1300 s, resulting in ca. 108 events with different
coincidence counts k and l for A and B, respectively,
yielding the joint click-counting statistics ck;l for each wave
plate setting and state jψ�i. For simplicity, we vary either
HWP or QWP angles, while keeping the other wave plate at
0° and using the same angles for A and B. From this data,
we can directly infer the nonlinear Stokes-parameter
fluctuations, Eq. (3), that are depicted in the top row of
Fig. 2. Via the highly significant negativities, nonlinear
polarization squeezing is observed for the macroscopic Bell
states. Note that a 15 standard deviation uncertainty is
chosen in Fig. 2 such that the error bars are actually visible,
but not dominant, in the plots.
Our model (dashed lines in Fig. 2) is based on our click-

counting description in the theory part and the macroscopic
Bell states in Eq. (4) [49]. Importantly, for all depicted
scenarios, we use a single set of only two fit parameters.
That is, the overall efficiency of our setup is estimated as
η ¼ 13.5%, and we have a relatively high λ ¼ 0.360—
corresponding to 3.3 dB quadrature squeezing. Small
experiment-theory deviations originate from fluctuating
pump powers over the experimental run and the theoretical
assumption that all polarization-altering components are
perfectly aligned.

Thus far, we demonstrated a nonlinear second-order
nonclassical polarization, inequality (3). We also outlined
that, with N ¼ 8 detection bins, a normally ordered matrix
of up to eighth-order moments of ŜNL can be used. In
addition, the total click number Ŝ0;NL is polarization
dependent too, Eq. (2). Hence, we can use that information
in terms of moments ∶Ŝm0;NL∶ (for m ¼ 0;…; N) for our
purposes as well, assigning a useful meaning to this
operator. Because of relations (1) and (2), we have π̂A ¼
ðŜ0;NL þ ŜNLÞ=N and π̂B ¼ ðŜ0;NL − ŜNLÞ=N. Thus, we can
also use the following matrix that exploits all accessible
moments of ŜNL and Ŝ0;NL:

M0 ¼ ðh∶π̂jAþj0A
A π̂

jBþj0B
B ∶iÞðjA;jBÞ;ðj0A;j0BÞ∈f0;…;N=2g×f0;…;N=2g;

ð5Þ
where N is even and rows and columns are defined through
index pairs ðjA; jBÞ and ðj0A; j0BÞ, respectively. (See
Refs. [33,34,46] for further details.) If the minimal eigen-
value ofM0 is below zero, min½eigðM0Þ� < 0, we infer up to
eighth-order nonlinear polarization nonclassicality of ŜNL
and Ŝ0;NL, being the maximal information contents extract-
able from our measurement with N ¼ 8 detection bins
[33,36]. Beyond variance-based squeezing criteria, we can
thereby explore nonclassical signatures in the skewness
(third order), kurtosis (fourth order), etc. of nonlinear
Stokes operators. Also, access to higher moments via more
detection bins N generally allows for an improved state
reconstruction [51].
The bottom row in Fig. 2 shows the results for our

data for macroscopic Bell states jψ�i. In all polarization

FIG. 2. Second-order and higher-order nonlinear polarization nonclassicality are depicted as negativities in the top and bottom row of
plots, respectively. The first column of plots shows the results for the symmetric macroscopic Bell state in Eq. (4) for ϕ ¼ 0 as a function
of the QWP angle and a fixed HWP angle at zero degree, and vice versa for the second column. The third and fourth columns include
analogous findings for the antisymmetric macroscopic Bell state, ϕ ¼ π. A� 15σ error margin is provided as a vertical bar. The
theoretical model is shown as dashed lines in all plots for the single set of fit parameters λ ¼ 0.36 and η ¼ 0.135.
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settings, jψ−i shows a higher-order, nonlinear polarization
well below the classical bound of zero. For jψþi, such
nonclassical correlations depend on the wave plate settings.
In comparison with the second-order approach, however,
the higher-order moments never rise above the boundary at
zero. In this context, it is important to understand that the
relevant information lies in the relative values of negativ-
ities, and not their absolute magnitude. That is, an increased
negativity in a particular wave plate configuration implies
stronger quantum effects along this direction on the
Poincaré sphere. Again, all higher-order nonclassical
effects are certified with high statistical significance and
agree with our theoretical prediction.
Conclusion.—We devised a theoretical approach for a

nonlinear Stokes-operator framework that is directly acces-
sible via state-of-the-art click-counting measurements. In
addition, we derived criteria that render it possible to detect
nonclassical polarization states of light in this manner. Our
nonlinear Stokes-operator formalism has a significantly
increased robustness against noise, rendering it possible to
detect nonlinear polarization squeezing even when linear
squeezing fails. Furthermore, we experimentally demon-
strated nonlinear polarization squeezing and even higher-
order nonclassical signatures. To this end, macroscopic Bell
states were generated via a waveguide-based Sagnac source
and measured using a single eight-bin click-counting
detection unit for both polarizations. In contrast to mea-
surements with true photon-number-resolving detectors,
the total click number is also polarization dependent. We
exploited this fact to certify nonlinear and nonclassical
polarization by jointly using up to eighth-order moments
for both nonlinear Stokes operators and total click number.
All observed quantum signatures are in agreement with our
theoretical model and are reported with high statistical
significance and without requiring correction for imper-
fections, such as unavoidable losses, detector saturation,
and incomplete photon-number resolution, all of which are
included in the here-developed theory.
Therefore, we formulated and implemented an easily

accessible method to characterize the quantum nature of
polarization states of light. This newfound potential can be
harnessed in photonic quantum-enhanced applications,
breaking classical bounds of what is achievable with linear
polarization, ranging from qubits and qudits (i.e., few-
photon states) all the way to macroscopic (i.e., continuous-
variable) correlations. Our method may be relevant in
future studies of macroscopic polarization entanglement
[52] beyond nonclassicality, in quantum metrology and
imaging applications [53–56], which have to be particularly
noise resilient, and in studies of spin noise effects [57–59]
in the quantum domain.
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[12] F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M.
Koschorreck, and M.W. Mitchell, Squeezed-Light Optical
Magnetometry, Phys. Rev. Lett. 105, 053601 (2010).

[13] T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov,
Quantum-enhanced magnetometer with low-frequency
squeezing, Phys. Rev. A 86, 023803 (2012).
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