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Topological defects can act as local impurities that seed cosmological phase transitions. In this Letter, we
study the case of domain walls and how they can affect the electroweak phase transition in the singlet-
extended standard model with a Z2-symmetric potential. When the transition occurs in two steps, the early
breaking of the Z2 symmetry implies the formation of domain walls which then act as nucleation sites for
the second step. We develop a method based on a Kaluza-Klein decomposition to calculate the rate of the
catalyzed phase transition within the 3D theory on the domain wall surface. By comparison with the
standard homogeneous rate, we conclude that the seeded phase transition is generically faster and it
ultimately determines the way the phase transition is completed. We finally comment on the pheno-
menological implications for gravitational waves.
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Introduction.—Cosmological phase transitions are of
primary importance in high energy physics as they can
shed light on major open questions in the standard model
(SM), such as the matter-antimatter asymmetry in the
Universe, and the dynamics of electroweak symmetry
breaking thanks to the exciting prospects for detecting
the corresponding background of gravitational waves
(GWs), see, e.g., [1,2].
In the case of first order transitions, their physics

crucially depends on the mechanism controlling the nucle-
ation of bubbles, which is commonly assumed to proceed
via thermal or quantum fluctuations in homogeneous
spacetime.
However, the presence of impurities at the time of the

transition can catalyze bubble nucleation, thus providing a
competing mechanism for the decay of the false vacuum
[3–7]. Following [3], we will refer to this case as inho-
mogeneous or seeded nucleation, as the tunneling proba-
bility is not uniformly distributed on the spacetime but it is
enhanced at the location of the seeds.
The nature of the impurities can be vastly different,

including black holes [8–15], local overdensities [16–18],
and temperature fluctuations [19], as well as topological
defects [3–5,7,20–31] for which most studies have focused
on cosmic strings [5,21–27] and monopoles [3,4,28–30].
In this Letter, we will consider the case of domain walls

(DWs) (see Refs. [32,33] for related work in 1þ 1

dimensions), two-dimensional defects related to the spon-
taneous breakdown of a discrete symmetry [34,35], for
which we provide a coherent thermal history from the time
of formation to the subsequently induced seeded phase
transition in the early Universe.
In order to study the seeded nucleation, we introduce a

new method based on a Kaluza-Klein (KK) decomposition
along the direction orthogonal to the walls. This circum-
vents the task of solving a nontrivial system of partial
differential equations, and at the same time gives a more
physical picture of the inhomogeneous tunneling as a
lower-dimensional homogeneous transition.
Even though this formalism is rather general, our case of

study will be the electroweak phase transition within one of
the simplest and most popular extensions of the SM, the
XSM, see e.g., [36–62], where the only new particle is a
real scalar field S, singlet under the SM gauge group, and
odd under a Z2 symmetry.
We will show the existence of a new type of electroweak

phase transition in the XSM that is catalyzed by the DWs
formed when the singlet scalar develops a vacuum expect-
ation value (VEV). Bubbles of true vacuum will be
nucleated inside the DWs and expand, eventually collaps-
ing the wall network. This process will be faster than the
homogeneous nucleation, and therefore it will be the one
responsible for completing the transition with important
phenomenological implications.
Setup and nucleation condition.—Our case of study is

the SM extended with a real scalar singlet S, odd under a Z2

symmetry S → −S. The renormalizable potential in the
unitary gauge reads

Vðh; SÞ ¼ −
μ2

2
h2 þ λ

4
h4 −

m2

2
S2 þ η

4
S4 þ κ

2
h2S2; ð1Þ
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and we take the parameters μ2, m2, η as well as the “portal
coupling” with the Higgs κ to be positive. The physical
singlet mass in the zero-temperature vacuum ðh ¼ v;
S ¼ 0Þ is m2

S ≡ κv2 −m2, with v ¼ 246 GeV.
Throughout this Letter, we will perform a perturbative

study of the electroweak phase transition (see, e.g., [63–68]
for nonperturbative approaches to this subject), and we will
account for temperature corrections by retaining the leading
order in the high-temperature approximation. This amounts
to work with thermal masses given by

μ2ðTÞ ¼ μ2 − chT2; m2ðTÞ ¼ m2 − csT2; ð2Þ

where ch and cs read [43]

ch¼
2m2

Wþm2
Zþm2

hþ2m2
t

4v2
þ κ

12
; cs¼

4κþ3η

12
: ð3Þ

Our focus is a two-step electroweak phase transition in
which at high temperatures all symmetries are restored. The
first step entails the spontaneous breaking of the Z2

symmetry at the temperature Td, with the singlet scalar
developing a nonzero VEV, vsðTÞ ¼ mðTÞ= ffiffiffi

η
p

, while the
Higgs minimum is still at zero. Given that the two vacua
hSi ¼ �vsðTÞ are energetically equivalent, regions with
þ and − will form inside a Hubble patch separated by DWs
with profile

SDWðzÞ ¼ vsðTÞ tanh½mðTÞz=
ffiffiffi

2
p

�; ð4Þ

and tension given by σDW ¼ ffiffiffiffiffi

8η
p

vsðTÞ3=3, see, e.g., [69].
At temperatures below the critical temperature Tc, the

ð0;�vsÞ vacua become metastable and decay to the (true)
electroweak vacuum ðv; 0Þ. This second and last step is
usually assumed to occur in homogeneous spacetime,
equivalently either inside the þ or − domains, and it is
typically first order owing to the nonzero singlet VEV. The
whole process may then be summarized as

ð0; 0Þ → ð0; vsÞ → ðv; 0Þ: ð5Þ

The presence of the DWs can, however, induce a seeded
vacuum decay which can only happen close to the
boundary between the þ=− domains, thus providing a
competing mechanism for the second step in (5) (homo-
geneous tunneling can in fact still occur far from the DWs).
In order to quantitatively describe the tunneling cata-

lyzed by the DWs, it is natural to define a nucleation rate
per unit surface given by [20,23]

γS ≡ Γ
S
¼ A0 expð−SinhÞ; ð6Þ

where A0 ∼ σDW and Sinh is the action describing the
inhomogeneous tunneling. In order to find the nucleation

condition in the expanding Universe, we parametrize the
total surface occupied by the DWs inside one Hubble
volume as SH ¼ ξH−2, where ξ is Oð1Þ in the scaling
regime [69]. The condition defining the nucleation tempera-
ture Tn is then

N ðTnÞ≡
Z

Tc

Tn

ξ
γS
H3

dT
T

¼ 1: ð7Þ

In a radiation-dominated Universe we obtain

Sinh ≃ 3 log
MPl

Tn
þ log

σDW
T3
n
þ log ξ − 8.5 ≈ 105; ð8Þ

where we have taken the DW tension and the nucleation
temperature to be at the electroweak scale.
The action Sinh is associated with the formation of a

bubble that modifies the original DW profile due to the
onset of a nonzero Higgs VEV at its core, and will be
evaluated with the methods discussed in the next section.
Seeded phase transition.—The starting point for our

formalism is the following ansatz for the fields in the
background of the unperturbed DW in the spirit of a KK
decomposition,

S¼SDWðzÞþ
X

k

skðxÞσkðzÞ; h¼
X

k

hkðxÞϕkðzÞ: ð9Þ

The sum runs over a complete set of profiles, σkðzÞ and
ϕkðzÞ, which are chosen such that the quadratic part of the
3D action, obtained after integration over the z direction
orthogonal to the DW, is canonical and diagonal (the 3D
theory we will refer to should not be confused with the
dimensionally reduced theory for the light Matsubara
modes at finite temperature),

Sð2Þ ¼
Z

d3x

�

1

2
ð∂μhkÞ2þ

1

2
ð∂μskÞ2−

ω2
k

2
h2k−

m2
k

2
s2k

�

:

The 3D masses ω2
k and m2

k are understood as the spectrum
of bound and scattering states for a Pösch-Teller potential
∝ S2DW in quantum mechanics, and can be found exactly
with the corresponding eigenfunctions σk and ϕk, see, e.g.,
[70,71]. Neglecting the massless mode due to the breaking
of translational invariance in (9), the singlet modes consist
of a unique bound state s0, with massm2

0 ¼ 3=2m2ðTÞ, and
a gapped continuum starting at m2

KK ¼ 2m2ðTÞ. As
m2ðTÞ > 0 for temperatures below the Z2 spontaneous
breaking all these states have positive-definite masses.
The Higgs spectrum is qualitatively the same, with the

difference that more bound states are possibly allowed
depending on the ratio κ=η, and that their masses can be of
either sign. In the parameter space of interest there will be a
single Higgs bound state h0 with mass
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ω2
0 ¼

1

2
pm2ðTÞ − μ2ðTÞ; ð10Þ

where pðpþ 1Þ=2≡ κ=η. The gapped Higgs continuum
similarly starts at ω2

KK ¼ ðκ=ηÞm2ðTÞ − μ2ðTÞ.
In order to make the problem tractable, we will

take advantage of the mass gap between the discrete states
(h0, s0) and the continuum scattering states by integrating
out the latter at tree level (see Ref. [71] for more details).
The resulting EFT consists of s0 and h0 as the only
dynamical modes. Their interactions are inherited from
the 4D potential in (1) as well as mediated by the tree-level
exchange of the continuum modes, and can be described by
an effective potential V3D

eff given by

V3D
eff ¼

1

2
ω2
0h

2
0 þ

1

2
m2

0s
2
0

þ c3ηm3=2 ffiffiffi

η
p

s30 þ c3κm3=2 κ
ffiffiffi

η
p s0h20

þ 1

4
ðcλmÞλh40 þ

1

2
ðc4κmÞκh20s20 þ

1

4
ðc4ηmÞηs40

þ 1

m2
KK

P6ðh0; s0Þ þ
1

m4
KK

P8ðh0; s0Þ; ð11Þ

where the c coefficients are ≲Oð1Þ numbers, and we have
dropped the explicit temperature dependence on the
parameters. The effective interactions mediated by the
continuum states are displayed in the last line of (11),
where P6;8 are polynomials in h0 and s0 of sixth and eighth
order, respectively, and mKK indicates the generic scale of
the continuum masses.
The key advantage of this approach is that the DW

dynamics and the seeded phase transitions can now be
understood in terms of the 3D effective potential in (11).
According to our ansatz in (9), the initial DW configuration
corresponds to all the 3D modes set to zero, which
effectively means h0 ¼ s0 ¼ 0 in the EFT. Since m2

0 is
positive definite, we need to consider only the lightest
Higgs mode: when ω2

0 > 0 the DW configuration is either a
local or global minimum of the theory, whereas ω2

0 < 0

implies a runaway direction and the DW is classically
unstable.
Let us first consider the case in which ω2

0 > 0 for all
temperatures. For T > Tc the DW configuration is stable
and the 3D minimum with (h0 ¼ 0, s0 ¼ 0) is global. On
the other hand for T < Tc the DW configuration is
metastable, since in the 4D theory the global minimum
is now S ¼ 0 and h ≠ 0, and correspondingly the 3D
minimum can only be local. The seeded phase transition
can then be described in terms of (11) as the decay of the
metastable vacuum ðh0 ¼ 0; s0 ¼ 0Þ:

ð0; 0Þ3D → ðhh0i; hs0iÞ3D; ð12Þ

where h� � �i denotes the generic release point, which needs
to lie within the EFT validity for consistency. The transition
above is guaranteed to be first order due to the positive h0
and s0 masses.
This transition is homogeneous in the 3D theory

and corresponds to O(2) symmetric bubbles nucleated on
the DW plane, which are time independent in the high-
temperature limit. The nucleation rate can be obtained with
standard techniques, e.g., with COSMOTRANSITIONS [74]
[neglecting derivative operators arising at Oð1=m4

KKÞ]. The
corresponding bounce action will be indicated by
Sinh ¼ S2=T. An example of tunneling trajectory is shown
in Fig. 1 for a particular choice of model parameters.
Let us now comment on the case in which ω2

0 turns
negative at some temperature Tr such that ω2

0ðTrÞ ¼ 0. The
case in which Tr < Tc is actually described by seeded
tunneling as explained above: as ω2

0 goes to zero for
T → Tr the barrier around ð0; 0Þ3D becomes smaller and
smaller, ensuring successful nucleation for some tempera-
ture between Tr and Tc.
The case in which ω2

0 turns negative for Tr > Tc is not
generic in the model parameter space and will not be
discussed here.
The rate of seeded tunneling can also be evaluated by

employing the thin wall approximation. This amounts to
approximate the energy difference between the false
vacuum and the bounce configuration ΔE in terms of
key quantities such as the size of the bubble R, its tension
σB (see Ref. [71] for a discussion on how to estimate the
bubble tension in a multifield potential in the thin wall
limit), and the energy difference between the false and true
vacuum, ϵ.
When the transition is seeded by a DW, however, one has

to take into account that part of the DW surface will be
eaten in the process of nucleation. This leads to the
following estimate:

ΔEðRÞ ¼ 4πR2σB −
4

3
πR3ϵ − πR2σDW; ð13Þ

FIG. 1. Contours for the effective potential (11) in the ðh0; s0Þ
plane, and O(2) tunneling trajectory (solid red line) obtained
with COSMOTRANSITIONS for the choice of the parameters κ, η,
mS as indicated in the figure, evaluated at T ¼ 0.8Tc, with
Tc ≃ 110 GeV. The initial DW configuration corresponds to the
metastable vacuum h0 ¼ s0 ¼ 0.
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where we have assumed that the nucleated bubble is
approximately spherical. Maximizing the energy we obtain
the size of the critical bubble R� and the corresponding
action

Sinh ≈
ΔEðR�Þ

T
¼ 16πðσB − σDW=4Þ3

3Tϵ2
: ð14Þ

A more refined ansatz can be made to account for
deviations from spherical symmetry, as for instance con-
sidering an O(2) symmetric ellipsoid centered on the DW
(see Ref. [71] for details), which gives qualitatively similar
results.
For σDW → 0, Eq. (14) clearly coincides with the

transition rate in homogeneous spacetime [75–77]. On
the other hand, the presence of a DW with nonzero tension
always reduces the barrier and thus catalyzes the transition.
Results and conclusion.—An overview of our results is

shown in the left panel of Fig. 2 as a scan over the model
parameter space fixing the singlet mass to a representative
value. Because of the presence of the DWs, seeded vacuum
decay always occurs before the would-be homogeneous
nucleation in all the two-step parameter space. In the red
region, homogeneous nucleation is possible but seeded
nucleation is faster. This is determined for each point by
identifying the would-be homogeneous nucleation temper-
ature, and evaluating the action S2=T within the 3D
effective potential (11) at this temperature. As this turns
out to be below the nucleation condition, we conclude that
seeded nucleation must have occurred before the homo-
geneous one.
Outside the red region homogeneous bubbles fail to

nucleate and the transition can only complete by seeded
tunneling, opening up the new viable parameter space

colored in blue, which is determined by requiring success-
ful nucleation at some temperature in the EFT. The dotted
blue line indicates the parameter space where ω2

0 remains
positive at T ¼ 0, meaning that the barrier in V3D

eff will never
vanish and fields may remain stuck in the false vacuum
depending on the nucleation rate. This is in fact the case for
points below the purple line where even seeded bubbles fail
to nucleate.
The interplay of homogeneous and seeded nucleation is

shown in detail in the right panel of Fig. 2 for the
benchmark point indicated by the red star in the left panel.
The red line shows the standard S3=T action for the
homogeneous tunneling, for which the nucleation condi-
tion is fulfilled at T ∼ 0.8Tc, with Tc ¼ 110 GeV. This
benchmark predicts a (would-be) classical instability of the
DWs around Tr ∼ 0.65Tc where ω2

0 vanishes.
The S2=T action is evaluated according to various levels

of approximation within the effective 3D potential,
namely neglecting altogether the contribution from the
continuum states, corresponding to neglecting the last line
in (11) (green line); at the order Oð1=m2

KKÞ and thus
neglecting P8 in (11) (orange line); at Oð1=m4

KKÞ includ-
ing all the terms in (11) (blue line). Close to Tr all the
approximations predict the same value of S2=T because
the barrier is small and the release point is very close to the
origin, while at higher temperatures they start differing.
This is understood by noticing that close to Tc the false
and true vacuum become almost degenerate, and the
critical bubble will have a larger volume for the energy
gain to balance its tension. Within the 3D theory this
means that the bulk effects from the direction orthogonal
to the DW, which are controlled by the continuum states,
become increasingly important making this region hardly
tractable in the EFT.

FIG. 2. Left: scan in the ðκ; ηÞ parameter space for mS ¼ 250 GeV. In the upper left corner the phase transition does not follow the
two-step process of (5), whereas in the bottom right corner the T ¼ 0 vacuum is not the electroweak one. In the red region the seeded
nucleation is faster than the homogeneous one, whereas in the blue region homogeneous bubbles fail to nucleate, but seeded bubbles can
complete the phase transition. Below the purple line the system remains trapped in the false vacuum. Right: comparison of the bounce
action for the homogeneous tunneling S3=T, and for the seeded tunneling S2=T (with different approximations in the EFT) and S=TTW in
the thin wall limit, as a function of the temperature for mS ¼ 250 GeV, κ ¼ 1.3, and η ¼ 1.6.
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Very close to Tc, however, the bubble is expected to
become thin and the approximation (14) to work reliably.
The prediction for the seeded bounce action in the thin wall
approximation S=TTW, is shown in the right panel of Fig. 2
by the purple and light-purple line for a spherical ansatz
Oð3Þ, and for an ellipsoid with O(2) symmetry (which
gives the least action), respectively. The corresponding
nucleation temperature according to (8) is estimated to be
∼0.97Tc. We also indicate a small gap of calculability
where our methods suffer from theoretical uncertainty,
namely extrapolation of the thin wall away from Tc and
significantly different results for the Oð1=m2

KKÞ and
Oð1=m4

KKÞ predictions.
The GW signal associated to this new type of phase

transition is yet to be explored. Nonetheless, we can expect
it to differ from its homogeneous counterpart due to (i) a
large violation of spherical symmetry of the bubbles (see
Ref. [71] for the detailed shape), and (ii) the effective
duration of the transition is here set by the average distance
among the defects [7] rather than the slope of the free
energy, meaning that for ξ ∼Oð1Þ the GW signal can be
naturally amplified. In addition, (iii) the presence of
different physical scales (average distance between bubbles
nucleated on the same wall, and wall-wall distance) may
result in characteristic spectral features that can be searched
for in the upcoming GW data.
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