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We revisit the possibility that dark matter is composed of stable scalar glueballs of a confining dark
SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for the first
time in a thermal effective theory accounting for strong-coupling dynamics. An important ingredient of our
analysis is the use of an effective potential for glueballs that is fitted by lattice simulations. We predict the
relic abundance to be in the range 0.12ζ−3T Λ=ð137.9 eVÞ≲ Ωh2 ≲ 0.12ζ−3T Λ=ð82.7 eVÞ, with Λ being the
confinement scale, ζT the visible-to-dark sector temperature ratio, and the uncertainty is coming from the fit
to lattice data. This prediction is an order of magnitude smaller than the existing glueball abundance results
in the literature. Our framework can be easily generalized to different gauge groups and modified
cosmological histories paving the way toward consistent exploration of strongly coupled dark sectors and
their cosmological implications.
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Introduction.—Confining dark Yang-Mills sectors are
often considered as a possible source of cold dark matter
(CDM) in the Universe. In the simplest case, such dark
gauge sectors are decoupled from the standard model (SM),
except for the gravitational interaction. However, the strong
self-interactions confine the gauge sector into composite
objects such as glueballs, in the case of a dark sector only
composed of dark gluons. In a minimal approach, the
lightest composite state predicted by a pure strongly
coupled gauge theory, the scalar dark glueball, is exten-
sively discussed in the literature as a possible natural CDM
candidate [1–14] (see also Ref. [15] for a more general
discussion including “dark hadrons” and Ref. [16] for
phenomenology of generic late-time forming DM). As an
important case of self-interacting DM, this type of DM
enables a consistent description of the structure of the
Universe at small scales, in particular, helping resolve the
so-called missing satellite problem [17] and the cusp-core
problem in the CDM distribution at galactic scales [18,19].
Furthermore, strongly coupled dark Yang-Mills theories
resembling quantum chromodynamics (QCD) in the stan-
dard model are physically motivated (e.g., these sectors
show up frequently in string compactifications [20–30])
and a wealth of knowledge in nonperturbative QCD can be
directly applied there. Note, since only a pure Yang-Mills

theory has robust and clean results available from lattice
simulations [31], it has traditionally been the best starting
point to study strongly coupled dark sectors rigorously.
With the presence of a first-order confinement-

deconfinement phase transition at a critical temperature
Tc [31–35], an analysis of relic abundance of this type of
DM is nontrivial and requires a detailed knowledge of
thermal field theory in a nonperturbative domain. The
existing calculations predict that the relic abundance of
dark glueballs overcloses the Universe for a confining
sector with critical temperature above the electron volt
scale, if that sector is not significantly cooler than the SM
thermal bath. When multiple dark gauge sectors are
present, a situation ubiquitous in string theory, this
becomes a serious problem for phenomenology [36].
Therefore, a precise understanding of the cosmological
generation of glueball DM, with the inclusion of strong-
coupling effects, is necessary. In this Letter, we develop a
novel approach to study the relic abundance of dark
glueballs by using the well established low-energy effective
model of glueball and gluon dynamics at finite temper-
atures [37]. We further constrain the effective model
parameters by means of lattice results such as thermody-
namic quantities and observables of the gluon condensate at
finite temperature.
Our approach provides for the first time a rigorous

theoretical treatment of the dark glueball dynamics yielding
a prediction for the range of relic abundance 0.12ζ−3T Λ=
ð137.9 eVÞ ≲Ωh2 ≲ 0.12ζ−3T Λ=ð82.7 eVÞ, about an order
of magnitude below the previous estimates in Refs. [1,36],
depending on thevisible-to-dark sector temperature ratio ζT .
We confirm the linear dependence of the relic abundance
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with the confinement scale which is the essence of the dark
glueball overproduction problem in the earlyUniversewhile
the relic abundance itself is significantly reduced.
Glueball effective Lagrangian.—A first-principle’s treat-

ment of the SUðNÞ confinement-deconfinement phase
transition is a tough theoretical challenge which requires
a consistent description of a deeply nonperturbative dynam-
ics. Lattice simulations represent a valuable tool to study
phase transitions in Yang-Mills theories with and without
matter fields (e.g., see Refs. [31,38,39]). At the same time,
other complementary approaches have been used to under-
stand different aspects of the strong-coupling effects, such
as effective models and the functional renormalization
group [40–59]. Here, we describe the dynamics of dark
glueballs by means of an effective field theory [37].
At nonvanishing temperatures T, the ZN center of

SUðNÞ is a relevant global symmetry [60] and it is possible
to construct a number of gauge invariant operators charged
under ZN. The Polyakov loop is a remarkable example,
defined as

lðxÞ¼ 1

N
Tr½L�≡ 1

N
Tr

�
P exp

�
ig
Z

1=T

0

A0ðτ;xÞdτ
��

; ð1Þ

where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g is
the SUðNÞ coupling constant, and ðτ;xÞ are Euclidean
spacetime coordinates. The Polyakov loop is charged with
respect to the center ZN of the SUðNÞ gauge group [60]
under which it transforms as l → zl with z ∈ ZN . Since
the expectation value of the Polyakov loop vanishes at
temperatures below the critical one and it is nonzero at
higher temperatures, it is typically used as an order
parameter for the Yang-Mills confinement phase transition
at temperature Tc ∼ Λ [60]. This observation was exploited
to model the phase transition in a mean field approach in
terms of Polyakov loops known as the Polyakov loop
model (PLM) [51]. This model captures the essential
features of confinement phase transition in SUðNÞ theories
with N ≥ 2 while PLM-inspired models were also pro-
posed to understand the physics of heavy-ion collisions at
the RHIC collider [57,58]. In [33], it has been shown that
PLM can very well capture thermodynamic observables
predicted by lattice simulations [31].
At temperatures around Tc, one can treat the glueball

field H and the Polyakov loop l in a unified description,
with an effective temperature-dependent potential given
by [37]

V½H;l� ¼ H
2
ln

�
H
Λ4

�
þ T4V½l� þHP½l� þ VT ½H�; ð2Þ

where the first term is the zero-temperature glueball
potential which can be obtained via the constraint of trace
anomaly [61,62], Λ is the confinement scale of the theory,

and V½l� and P½l� are assumed to be real polynomials in l
and invariant under ZN, with coefficients that depend on
fits to lattice data. Thermal corrections are included in
VT ½H�, which might involve terms that are nonanalytic
in H [48].
Note that (i) the potential in Eq. (2) reduces to the

glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a
dimension four scalar field, and (iii) the term that couples
H and l is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly [Eq. (21) of Ref. [62] ].
In this simplified model we neglect the entire tower of

heavier glueballs and pseudoscalar glueballs and the
infinite series of dimensionless gauge invariant operators
with different charges under ZN. Nevertheless, this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last term in
Eq. (2) is negligible. Since the glueballs are relatively heavy
compared to the Λ scale their temperature contribution
VT ½H� can also be disregarded in the first approximation
[37]. We leave a refined analysis accounting for thermal
effects in the glueball potential for a future investigation.
In the opposite limit, T ≫ Tc, in the deconfined phase,

the term T4V½l� dominates, i.e., dark gluons are the
dominant component. The precise relation between the
confinement scaleΛ and the critical temperature of the phase
transition Tc depends mildly on the gauge group and matter
structure of the theory and is determined by lattice simu-
lations. In this Letter, we consider Tc ∼ 1.61Λ for SU(3)
(see, e.g., Ref. [63] for an arbitrary number of colors).
We consider the following Lagrangian for the glueball

and Polyakov loop degrees of freedom [37,64,65]:

L ¼ c
2

∂μH∂
μH

H3=2 − V½H;l�; ð3Þ

where

c ¼ 1

2
ffiffiffi
e

p
�

Λ
mgb

�
2

ð4Þ

is a constant determined by the glueball mass mgb, that in
the following is assumed to be mgb ¼ 6Λ [66]. The
Polyakov loop is a nondynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of l. This corresponds to
neglecting the nontrivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles and
their subsequent collisions. This could have a significant
impact on the formation of glueballs, as observed in the
presence of matter (see, e.g., Refs. [67,68]). The kinetic
term for the glueball field H is nonstandard, as it can be
inferred from its dimensionality. For this reason, we write
the glueball field H in terms of a canonically normalized
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scalar field ϕ as H ¼ 2−8c−2ϕ4, and from this point on we
refer to ϕ as the glueball field. It evolves according to the
effective Lagrangian

L ¼ 1

2
∂μϕ∂

μϕ − V½ϕ;l�;

V½ϕ;l� ¼ ϕ4

28c2

�
2 ln

�
ϕ

Λ

�
− 4 ln 2 − ln c

�

þ ϕ4

28c2
P½l� þ T4V½l�;

P½l� ¼ c1jlj2;

V½l� ¼ −
b2ðTÞ
2

jlj2 þ b4jlj4 − b3ðl3 þ ðl�Þ3Þ;

b2ðTÞ ¼
X4
i¼0

ai

�
Tc

T

�
i
; ð5Þ

where we have kept only the lowest order in P½l� satisfying
the symmetries. The Polyakov loop potential V½l� is
determined from symmetry arguments combined with fits
to lattice thermodynamic quantities. Our choice here is
taken from Ref. [33] and the numerical values of the
constants are reported in Table I, for clarity.
Temperature dependence of the Polyakov loop.—The

Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This effective description is expected to be valid in a broad
temperature range, except when the temperature is large
T ≫ Tc, where VT ½H� needs to be included. Since the
Polyakov loop is a nondynamical degree of freedom, its
temperature evolution is determined by the location of the
minimum in the effective potential. Being the order
parameter of the phase transition, l approaches 1 at high
temperatures and vanishes for temperatures below the
critical one. The stationary points of l are l ¼ 0 and

jl�j ¼
3b3
4b4

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 512b2ðTÞb4 − 4c1b4

c2 ðϕTÞ4
1152b23

s !
; ð6Þ

representing two minima, l ¼ 0 and l ¼ lþ, separated by
a maximum in l ¼ l−. The solution l ¼ 0 denotes the
confined phase and it is a global minimum only for
temperatures below the critical temperature. In the decon-
fined phase, the solution l ¼ 0 becomes metastable and
l ¼ lþ becomes the global minimum. The Polyakov loop
is then “integrated out” using its equation of motion
l ¼ lðϕ; TÞ, giving rise to a potential for the glueball

field in the form V½ϕ; T� ¼ V½ϕ;lðϕ; TÞ�. Moreover, we set
the zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of the
glueball minimum in this new potential is shown in Fig. 1
in terms of the fieldH and compared to lattice simulations.
Below Tc, hHi is constant with temperature and it dis-
continuously jumps to a lower value right above the critical
temperature. We match the size of the discontinuity
predicted in our potential to a result from lattice, given
in Ref. [69] (the red point in Fig. 1). This constraint is
enough to impose limitations on the value of c1 in Eq. (5),
the glueball-Polyakov loop coupling. We found this value
to be c1 ¼ 1.225� 0.19 at 95% C.L. The associated uncer-
tainty of ∼20% dominates the uncertainty in the glueball
relic abundance in our analysis, such that ∼Oð3%Þ uncer-
tainties on the fitting parameters in Table I have been
ignored.
Cosmological evolution of the glueball field.—Thanks to

the previous discussion, we are left with a relatively simple
recipe to describe the glueball field dynamics across the
phase transition. Note that the evolution can be treated as
completely classical, since the effective Lagrangian in
Eq. (5) fully accounts for quantum effects at tree level.
In a first approximation, the glueball field is homo-

geneous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

ϕ̈þ 3H _ϕþ ∂ϕV½ϕ; T� ¼ 0; ð7Þ

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the

TABLE I. Parameters of the effective potential in Eq. (5).

a0 a1 a2 a3 a4 b3 b4

3.72 −5.73 8.49 −9.29 0.27 2.40 4.53

FIG. 1. Vacuum expectation value of the glueball field H as a
function of temperature. The field is normalized to its value in the
confined phase. The discontinuity at T ¼ Tc is characteristic of a
first-order phase transition and the value of the jump depends on
the parameter c1, whose limiting values shown in this plot are
obtained by a comparison with the lattice data [69]. The values
shown correspond to 1σ uncertainty range. We do not use the
lattice data for higher temperatures in the comparison, as our
model neglects thermal corrections, which are increasingly
relevant above Tc.
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Universe, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no
interactions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ξT. The photon temperature Tγ

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using

t ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45

4π3g�;ρðTγÞ

s
mP

T2
γ
; ð8Þ

where mP is the Planck mass and g�;ρðTγÞ is the number of
degrees of freedom of the SM bath at temperature
Tγ ¼ ξTT. Note that the dark sector temperature T is the
one that governs the phase transition, i.e., entering in
Eq. (2). In terms of this variable Eq. (7) reads

4π3g�;ρ
45m2

P
ξ4TT

6
d2ϕ
dT2

þ 2π3

45m2
P

dg�;ρ
dT

ξ4TT
6
dϕ
dT

þ ∂ϕV½ϕ; T� ¼ 0;

ð9Þ
where the second term can be neglected for a large range of
temperatures as g�;ρ is constant except at a few isolated
events (the QCD phase transition, for example). We
consider it as a free parameter and take g�;ρ ¼ 100, which
has very little impact on our final result. The visible-to-dark
sector temperature ratio can be absorbed in an effective
Planck mass, M ≡mP=ξ2T .
The nonperturbative dynamics of the system is encoded

in Eq. (9) and, after the phase transition, we assume that the
energy density stored in the glueball field gives precisely
the DM relic density. From the particle physics point of
view the evolution can be described as follows. In the
deconfined phase the Universe is populated by dark gluons
that form glueballs at the phase transition, thanks to the
interaction term in Eq. (5). When the phase transition is
completed, DM glueballs populate the Universe and
interact with each other following the potential in
Eq. (5), corresponding to interactions in the form ðϕ −
ϕminÞn for n ¼ 2; 3;…, with ϕmin being the value of the
field at the minimum of the potential. The importance of the
higher-n terms depends on the displacement of ϕ from its
minimum, which is a measure of the glueball density. If, for
example, ϕ is very close to its minimum, only the quadratic
term is relevant, which is equivalent to having a massive
free field. On the other hand, large amplitudes (i.e., larger
densities) for ϕ require increasingly more nonlinear inter-
action terms (see also Refs. [70,71]).
In Fig. 2 we show the evolution of the glueball field as a

function of temperature, starting from different initial
conditions set in the deconfined phase. In the very early
stage, the field evolution is dominated by the Hubble
friction and it remains frozen until H becomes comparable
to the temperature-dependent effective glueball mass in the
deconfined phase, represented by the gray region labeled as

H ≃mgbðTÞ. This happens at a temperature Tosc ∼
ffiffiffiffiffiffiffiffi
MΛ

p
,

when the field starts to oscillate around the minimum of the
potential, shown as a dashed red line in Fig. 2, with a
damped amplitude. We take Tosc ≫ Tc, as M ≫ Λ, unless
the confinement scale is close to the Planck scale or the dark
sector is very cold. Therefore, the oscillations of the
glueball field in the deconfined phase have enough time
to decay, regardless of initial condition, and ϕ just follows
the minimum of the potential (with damped oscillations of
small amplitude but with an increasing average speed) until
the phase transition occurs at Tc (see Fig. 2). At the critical
temperature, the value of the Polyakov loop jumps dis-
continuously, causing a discontinuous jump in the mini-
mum of the glueball potential, as shown in Fig. 1,
generating oscillations with a high initial velocity that wash
out any dependence on initial conditions at T > Tc.
Glueball relic density.—In the confined phase, ϕ is

displaced enough from its minimum to allow for annihi-
lation of n glueballs intom < n glueballs, n → m, which is
possible because of the (nþm)th order interaction term in
the Lagrangian. As the glueball number density decreases,
all the higher order n → m processes become less efficient
until the only efficient number-changing process is 3 → 2.
Note that the 3 → 1 and 2 → 1 processes are prohibited due
to kinematic constraints arising from the energy conserva-
tion. The 3 → 2 interactions are precisely the ones deter-
mining the relic abundance of glueballs when Γ3→2 < H.
The evolution is that of a simple damped oscillator in a
nonlinear potential, and the energy stored in these oscil-
lations around ϕmin ≈ 0.28Λ corresponds to the relic DM
abundance, namely, Ωh2 ¼ ρ=ρc, where the critical density
is ρc ¼ 1.05 × 104 eV cm−3, and

ρ ¼ 2π3

45
g�;ρðTÞ

T6

M2

�
dϕ
dT

�
2

þ V½ϕ�: ð10Þ

FIG. 2. Evolution of the glueball field for a phase transition
scale Λ ¼ 10−5mP, c1 ¼ 1.225, and different initial conditions.
The gray region indicates the phase in which the glueball mass is
comparable with the Hubble parameter,H ≃mgbðTÞ. The vertical
dashed line marks the phase transition at Tc ¼ 1.61Λ. The red
dashed line shows the evolution of the minimum of the glueball
potential.
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This energy density scales as ∼T3, as CDM, when the
harmonic approximation is valid, i.e., after the decoupling
of 3 → 2 interactions. Numerically solving Eq. (9) down to
the temperature Tf, and below this temperature the evo-
lution is simply determined by the cosmological expansion,
for Λ≲ 0.1M, the energy density is given by 0.015≲
T−3
f Λ−1ρ≲ 0.020 for 1.035 < c1 < 1.415. In conclusion,

the predicted glueball relic density is

0.12ζ−3T
Λ

137.9 eV
≲ Ωh2 ≲ 0.12ζ−3T

Λ
82.7 eV

; ð11Þ

and this result should be compared to Ωh2 ∼
0.12ζ−3T Λ=5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This difference is due to
two main concurrent effects. The first one is an overesti-
mation of the energy stored in the dark gluon field. In the
literature, dark gluons are considered as radiation for all
temperatures above the phase transition. In our approach,
the energy density of dark gluons for temperatures right
above the critical one strongly deviates (reduced by a factor
∼50) from that of an ideal gas, in agreement with lattice
results. The second effect is that glueballs do not redshift as
CDM immediately after the phase transition, going through
a phase in which their equation of state is −1≲ p=ρ≲ 0,
making them dilute slower than dust. The combination of
these effects leads to the found discrepancy. We note also
that thermal corrections increase the glueball relic density,
by displacing the high-temperature minimum of ∼10%
farther from the low-temperature minimum [48]. We
estimated an increase of the relic density up to ∼80%
due to such thermal corrections, which will be subject of a
future investigation.
A possible constraint on the model comes from the

contribution of dark gluons to the effective number of
relativistic species, constrained to be ΔNeff < 0.35 at the
95% C.L. (confidence level)[72]. A temperature ratio ζT ≳
2 is enough to evade this constraint. Therefore, a dark
gauge sector interacting only via gravitational interactions
with the SM and a confinement scale at the electron volt
scale might explain the DM abundance without spoiling
other cosmological observables.
Discussion and conclusions.—In this Letter, we pre-

sented a new approach to calculate the glueball CDM relic
density which includes the self-interactions in a nonper-
turbative fashion. We bridge the well-established thermal
EFT with the existing lattice results to provide rigorous
phenomenological predictions. Because of its generality, it
is easy to apply this approach to different gauge groups, but
in this Letter we considered only SU(3) for the sake of
clarity. Moreover, the method presented in this Letter is
suitable for investigations of the glueball formation in
modified cosmological histories, requiring only a simple
modification of Eq. (9), one of the main results of this
Letter. Another interesting question is on the role of thermal

effects in the glueball potential, that we neglected in this
preliminary study. We postpone this study to a future work.
Our Letter paves the road toward consistent exploration of
strongly coupled dark sectors and their cosmological
implications.
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