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The 21-cm line emitted by neutral hydrogen (HI) during the Dark Ages carries imprints of pristine
primordial correlations. In models of inflation driven by a single, canonical scalar field, we show that a
phase of ultra-slow-roll can lead to a null in all the primordial correlations at a specific wave number kdip.
We consider scenarios wherein the null in the correlations occurs over wave numbers 1≲ kdip ≲ 10 Mpc−1,
and examine the prospects of detecting such a damping in the HI signal due to the nulls at the level of power
and bispectra in future observational missions.
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Primordial correlations and 21-cm observations.—
Cosmic inflation remains the most attractive paradigm for
the generation of primordial perturbations. On large scales,
e.g., over 10−5 ≲ k≲ 1 Mpc−1, the primordial scalar power
spectrum as generated in some of the popularmodels of slow
roll (SR) inflation is remarkably consistent with the cosmic
microwave background (CMB) anisotropies and large-scale
structure (for a comprehensive list of inflationary models
consistent with the Planck data, see Refs. [1,2]). However,
on smaller scales, e.g., k≳ 1 Mpc−1, the constraints on the
primordial scalar power spectrum are considerably weaker.
Since the discovery of gravitational waves from merging
binary black holes, the weaker constraints over small scales
have been exploited to examine inflationary models which
enhance power on these scales. This leads to significant
production of primordial black holes and generation of
secondary gravitational waves of observable strengths
[3–16].
Often, in single field models of inflation involving the

canonical scalar field, a phase of ultra-slow-roll (USR) is
invoked to enhance the scalar power on small scales. The
first SR parameter ϵ1 exponentially decreases during such a
phase, resulting in large values for the second and higher
order SR parameters [4–6,17,18]. Such a departure from
SR inflation leads to a peak in the inflationary scalar power
spectrum and, generically, one finds that the power spec-
trum rises as k4 as it approaches the peak [19–21].
Interestingly, just before the power spectrum rises toward
the peak, a sharp drop in power occurs [22] and, if the
period of USR inflation is sufficiently long, the scalar
power spectrum actually vanishes at a particular wave
number, which we denote as kdip [23]. This occurs because
of the fact that the mode function describing the curvature
perturbation corresponding to the wave number kdip goes to

zero at late times toward the end of inflation. It can
immediately be shown that all of the higher correlations
involving the curvature perturbation will also necessarily
vanish at kdip. In cases wherein the duration of USR is not
sufficiently long, although a null does not arise, a sharp dip
in the scalar power spectrum as well as in the higher order
correlation functions is still encountered.
Over the scales 1≲ k≲ 10 Mpc−1, the 21-cm signal of

neutral hydrogen (HI) from the Dark Ages carries the signa-
tures of the primordial spectrum (see, e.g., Refs. [24,25]).
In contrast to the angular spectra of the CMB, which are a
convolution of the primordial spectra and the transfer
function of the photons, the features in the primordial
power and bispectra leave direct and distinct imprints in the
HI signal. Therefore, an inflationary feature such as a null
or a sharp dip in the primordial correlations may potentially
be observed in HI, if the features occur over the corre-
sponding scales [26]. In this Letter, we consider specific
scenarios involving a phase of USR inflation and inves-
tigate the effects of a dip on the HI signal at the level of both
power and bispectra. If a drop in the scalar power spectrum
is to occur over 1≲ k≲ 10 Mpc−1, we find that the CMB at
smaller wave numbers and the spectral distortions at higher
wave numbers limit the rise in power on small scales, and
hence the extent of the dip. We calculate the corresponding
observable signatures on the power and bispectra of the HI
signal and discuss the prospects of observing them in future
missions, such as a lunar array [27–29]. We also point
out challenges that can arise due to Poisson fluctuations
(PF) [30,31].
Nulls in inflationary correlations.—We now demonstrate

that nulls in the inflationary correlations (i.e., in the scalar
power spectrum as well as in higher order correlations)
are expected to arise in scenarios involving a phase of
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USR inflation. Consider a situation wherein a regime of
USR inflation is sandwiched between two epochs of SR
inflation. Let η denote the conformal time coordinate, and
let the two transitions between the three stages occur at the
times η1 and η2. Also, let the first SR parameter ϵ1 prior to
the first transition be a constant, say ϵ1i ≲ 10−2, while,
during the period of USR, it is given by ϵ1 ¼ ϵ1iðη=η1Þ6.
Since ϵ1 ≪ 1 throughout the domains of interest, the
Hubble parameter can be considered to be a constant,
say, HI, and hence the scale factor can be assumed to be of
the de Sitter form.
Let us focus on the evolution of modes that leave the

Hubble radius during the initial SR regime. In the first
domain η < η1, on super-Hubble scales, the mode function
characterizing the curvature perturbation in Fourier space,
say, fIk, can be expressed as

fIkðηÞ ¼ Ck þ
Dk

2
η2: ð1Þ

The constants Ck and Dk can be determined by matching
the super-Hubble solutions with the complete solution
in the SR regime, and they are found to be Ck ¼
iHI=ð

ffiffiffiffiffiffiffiffiffiffiffiffi

4k3ϵ1i
p

MPlÞ and Dk ¼ Ckk2. During the USR
phase, the modes function, say, fIIk , for modes that are
already on super-Hubble scales, can be expressed as

fIIk ðηÞ ¼ Ak þ Bk

�

1

η3
−

1

η31

�

: ð2Þ

The quantities Ak and Bk can be determined by matching
the mode functions and their time derivatives at the
transition at η1 to obtain that Ak ¼ Ck½1þ ðk2η21=2Þ� and
Bk ¼ −Dkη

5
1=3.

When the phase of USR ends, because the wave number
of interest is on super-Hubble scales, its amplitude will
evidently freeze at its value at the conformal time η2. We
should clarify that such a behavior can also be expected if,
for η > η2, the parameter ϵ1 begins to grow leading to the
termination of inflation. Hence, the power spectrum is
determined by the value of fIIk at η2. Upon setting fIIk ðη2Þ to
be zero, we can immediately determine the wave number
kdip at which the amplitude of the curvature perturbation
vanishes. It is given by

kdip¼−
1

η1

�

1

3

��

η1
η2

�

3

−1

�

−
1

2

�

−1=2
≃

ffiffiffi

3
p

k1e−3ΔN=2; ð3Þ

where the final expression has been arrived at by assuming
that the epoch of USR is adequately long so that η1=η2 ≫ 1,
and we have set k1 ¼ −1=η1 (i.e., the wave number that
leaves the Hubble radius at the onset of USR), while ΔN
denotes the duration of USR in e folds. The power spectra
and all the higher order correlations involve the mode

function fk evaluated toward the end of inflation. Since the
mode function fk corresponding to the wave number kdip
vanishes at late times, any correlation function involving
this mode necessarily vanishes as well. However, if the
duration of USR is not long enough (in fact, when
eΔN ≲ 5=2), then the mode function, rather than vanishing,
settles down to a very small value at late times. In such
cases, a sharp dip is produced rather than a null in the
correlation functions, and the relation (3) predicts the
location of the dip. Moreover, when the dominant term
in the mode function fk vanishes, the subdominant terms
can lead to a small nonzero value at kdip, resulting in a dip
as opposed to a null.
Inflationary models, power and bispectra.—To illustrate

the nulls or dips that are expected in the correlation
functions, we shall consider two models of inflation driven
by a single, canonical scalar field that permit a brief period
of USR. These models should be treated as illustrative
examples of inflationary scenarios generally considered to
enhance power on small scales. We shall also briefly
discuss a reconstructed scenario which easily allows us
to achieve the desired background evolution and a power
spectrum that is consistent with the constraints from the
CMB on large scales.
The first model we shall consider is a model due to

Starobinsky that is described by a linear potential with a
sudden change in its slope [32–35]. It is one of the simplest
models that leads to a regime of USR and a steplike feature
in the scalar power spectrum. The potential describing the
Starobinsky model (ST) is given by [32–35]

VðϕÞ ¼
�

V0 þ Aþðϕ − ϕ0Þ for ϕ > ϕ0;

V0 þ A−ðϕ − ϕ0Þ for ϕ < ϕ0;
ð4Þ

where V0 sets the overall energy scale. Evidently, Aþ and
A− determine the slopes of the potential on either side of
ϕ0, and the slope is discontinuous at this point. Though
there are issues in achieving a natural end to inflation, we
consider the model because of its analytical tractability that
helps in illustrating arguments related to features induced
by USR (in this regard, see Supplemental Material [36]). In
the model, the epoch of USR occurs when the field crosses
ϕ0 and the duration of this epoch is determined by the ratio
of the slopes of the potential, i.e., A−=Aþ. It can be shown
that, in the model, kdip ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðA−=AþÞ
p

k0, where k0 is the
wave number that leaves the Hubble radius when the field
crosses ϕ0 [32,34,45]. The parameters V0 and Aþ are
constrained by Cosmic Background Explorer (COBE)
normalization on the CMB scales (for values of the para-
meters, see Supplemental Material [36], which includes
Refs. [46,47]). The constraints from spectral distortions
over the wave numbers 1 < k < 104 Mpc−1 limit the extent
of enhancement in the power spectrum at small scales [48],
and hence the duration of USR. We choose the parameters
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A− and ϕ0 so that the rise in power on smaller scales is
consistent with the Far Infrared Absolute Spectro-
photometer (FIRAS) constraints on μ distortions [12].
Also, these parameters are chosen such that the dip in
the power spectrum occurs at wave numbers k≳ 5 Mpc−1

to evade bounds on the matter power spectrum from the
Lyman-α data (see, e.g., Refs. [30,49]). For the parameters
we work with, we find that kdip ¼ 7.6 Mpc−1. We should
clarify that, the duration of USR in ST is determined by the
ratio of A−=Aþ, which, in turn, determines the height of
scalar power at its maximum. Since this amplitude is
constrained by μ distortion, it imposes a lower bound on
this ratio. Such a bound leads to an inadequate duration of
USR, producing a sharp dip, instead of a null in the power
spectrum.
The second model we shall consider is an inflationary

scenario driven by the Higgs field that is coupled non-
minimally to gravitation [14,50–52]. The model is known
as critical-Higgs inflation (CH), and the effective potential
in this scenario contains a point of inflection, which leads to
an epoch of USR thereby enhancing the scalar power over
small scales. The potential describing the model can be
written as

VðϕÞ ¼ V0

½1þ aðln zÞ2�z4
½1þ cð1þ b ln zÞz2�2 ; ð5Þ

where z ¼ ϕ=ϕ0. As in the case of ST, we choose the
parameters of the potential so that the power spectrum is
consistent with COBE normalization on large scales and
with the constraints from spectral distortions on smaller
scales. For the values of the parameters we work with (in
this regard, see Supplemental Material [36]), we find that a
dip in the power spectrum occurs at around kdip ¼
7.6 Mpc−1 and the power reaches its maximum amplitude
at around 5.5 × 109 Mpc−1. The μ distortion arising due to
this spectrum is found to be about 2.0 × 10−5, which is
within the FIRAS bound [12,48].
It is known that, in single field models of inflation, if the

enhancement in power is to be achieved over wave numbers
that are close to the CMB scales, there can arise a tension
between the value of the scalar spectral index nS in the
model and the constraint on the parameter from the CMB
data (for recent discussions, see Refs. [53,54]). In the ST
and CH models, the value of nS at the pivot scale of k� ¼
0.05 Mpc−1 turns out to be 0.9995 and 0.78, respectively,
which are well away from the mean value of 0.96 from
Planck [55]. One way to circumvent this challenge is to
construct inflationary potentials using the desired behavior
of ϵ1ðNÞ and, interestingly, it can be shown that these
reconstructed potentials too contain a point of inflection
[10]. In other words, using methods of reconstruction, it is
possible to arrive at potentials numerically that are con-
sistent with the CMB data on large scales and lead to a dip

in the power spectrum over 1≲ k≲ 10 Mpc−1 (for details,
see Supplemental Material [36]).
We find that the features around the dip have the same

characteristics in the reconstructed scenario as in the STand
CH models. Therefore, we shall proceed by considering
these models and examining their imprints on the 21-cm
signal. We evolve the background and compute the scalar
power and bispectra numerically (see Supplemental
Material [36] for details). In Figs. 1 and 4 (see
Appendix A), we have presented the inflationary scalar
power and bispectra, i.e., PSðkÞ and BSðk1; k2; k3Þ, that
arise in the ST and CH models, for the values of the
parameters we have worked with.
We note two related points regarding the bispectra. First,

in contrast to the power spectrum which is a positive
definite quantity, the bispectra can cross zero when depar-
tures from slow roll arise. Hence, it may vanish at locations
other than kdip. However, these nulls are dependent on the
nature of the integrals involved in the computation of the
bispectrum and may not be observed at the same locations
in the higher order correlations. Therefore, they are not as
generic as the dip of interest, which will be located at kdip in
the higher order correlations as well. Hence, in models
wherein a deviation from slow roll arises due to an epoch of
USR, the bispectra are guaranteed to exhibit a sharp dip at
kdip. Second, note that the power and bispectra in the
Starobinsky model rise more sharply than in the Higgs
model. This can be attributed to the sharp change in the
slope of the potential in the former model [34,56].
Moreover, for the models of interest, the dip in the power
spectrum occurs at the linear order of the perturbations.

FIG. 1. The inflationary scalar power spectra arising in ST and
CH models are illustrated for parameters that are consistent with
the constraints on spectral distortions from FIRAS. We have also
plotted the nearly scale invariant spectrum that may be obtained
from a typical SR model of inflation. The inset highlights the dip
in the spectra at k ¼ 7.6 Mpc−1, and we work with parameters
such that the dip occurs over wave numbers where the HI signal is
expected to be most sensitive to the primordial power spectrum.
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Though there may arise corrections to the power spectrum
due to higher order correlations, we have checked, for
instance, that the corrections due to the bispectrum are
negligible for the parameters considered.
Imprints on preionization HI signal.—We now turn to

discuss the imprints of the inflationary power and bispectra
with sharp dips that we have obtained on the 21-cm signal
of HI from the Dark Ages. We briefly outline the essential
points. In the rest frame of a hydrogen atom, the hyperfine
splitting of the ground state causes an energy difference that
corresponds to the wavelength of λ ¼ 21.1 cm. The spin
temperature TS of this line is determined by three processes
taking place in the early Universe: emission and absorption
of CMB photons with a black body temperature TCMB,
collisions with atoms, and the mixing of the two levels
caused by Ly-α photons (i.e., the Wouthuysen-Field effect).
The spin temperature TS can be expressed in terms of
TCMB, the gas kinetic temperature TK , and the color
temperature of the Lyman-α photons Tα, as follows
[25,57]: TS ¼ ðTCMB þ ycTK þ yαTαÞ=ð1þ yc þ yαÞ. In
this expression, yc and yα determine the efficacy of the
collisions between the hydrogen atoms and of the hydrogen
atoms with the Lyman-α photons, respectively. Note that,
yc ∝ nHI and yα ∝ nα, where nHI and nα denote the number
density of HI and the Lyman-alpha photons. HI emits or
absorbs 21-cm radiation from the CMB depending on
whether TS is greater than or less than TCMB. This global
temperature difference is observable and can be expressed
as [25,58,59]

ΔTbðzÞ ≃ 30

�

1 −
TCMB

TS

��

1þ z
10

�

1=2
�

Ωbh2

0.022

�

mK: ð6Þ

The signal is observable at the frequency of
1420 MHz=ð1þ zÞ at a given redshift z.
Before the onset of the era of cosmic dawn, yα ¼ 0 and

the dynamics of TS is entirely determined by the other two
processes. For z≳ 50, collisions dominate and hence
TS ≃ TK . As TK ≃ TCMB for z≳ 200, TS relaxes to
TCMB in this redshift range and the observable signal is
negligible. At lower redshifts (z≲ 150), TK falls adiabati-
cally as 1=a2 and, as TS ≃ TK , HI is observable in
absorption. At even smaller redshifts, owing to the dilution
of the gas, the collisional coupling becomes progressively
weaker and TS relaxes to TCMB, causing the HI signal to
diminish.
We have relegated the details of the computation of the

power and bispectra of the HI signal to Appendix B. In
Fig. 2, we present the HI intensity power spectrum arising
in the ST and CH models at the redshifts of z ¼ 27 and
z ¼ 50. In the figure, we have also included the results from
a typical SR model, along with the contribution from PF. In
Fig. 3, we have illustrated the HI intensity bispectrum
arising in the ST and CH models at two redshifts in the

equilateral, squeezed, and flattened limits, along with the
contribution from PF.
Our main findings, shown in Figs. 2 and 3, clearly

indicate that, in the presence of an epoch of USR, there
arises a significant dip in the HI intensity power and
bispectra over the scales 1≲ k≲ 10 Mpc−1, when com-
pared to a typical SR scenario. The HI signal arising from
the inflationary bispectrum is seen to be smaller than the

FIG. 2. The HI intensity power spectra arising from the ST and
CH models have been plotted at the redshifts of z ¼ 27 and
z ¼ 50. For comparison, we have also presented the HI intensity
power spectra arising in a SR scenario leading to a nearly scale
invariant, power law primordial scalar power spectrum. We have
also included the power spectra due to PF at the corresponding
redshifts.

FIG. 3. The HI intensity bispectra arising from the ST and CH
models have been presented in the equilateral, squeezed and the
flattened limits with the same choice of colors as in Fig. 4. We
have focused around kdip and we have set ksq ¼ k=100 to arrive at
the behavior in the squeezed limit. The associated PF have also
been indicated.
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contribution from PF by many orders of magnitude. As the
Poisson contribution to the bispectrum depends on the HI
power spectrum [cf. Eq. (B4)], the detection of this signal
would provide further evidence of the presence of a null or
a dip in the inflationary power spectrum.
Sensitivity.—We now explore the feasibility of the

detection of the HI intensity power spectrum over scales
of interest. As can be seen in Fig. 2, our main predictions
are over the scales 1≲ k≲ 100 Mpc−1. The signal strength
at such scales is of the order of 10–1000 ðmKÞ2 in the
frequency range 25–50 MHz, for the redshift range
z ≃ 25–50. While the signal at z ≃ 25 is accessible to
SKA-Low (see, e.g., Ref. [60]), we expect the signal at
z ≃ 50 to be more pristine (i.e., less contaminated by
astrophysical processes close to the era of cosmic dawn)
and dominant. Such a signal could be explored by planned
lunar missions [27–29]. Under suitable assumptions (for a
detailed discussion and methodology, see Supplemental
Material [36]), the brightness temperature sensitivity of
1–10 ðmKÞ2 can be achieved for the scales of interest. A
comparison with Fig. 2 immediately suggests that the
attainable sensitivity should allow the detection of the
dip due to the epoch of USR in the HI power spectrum.
Conclusions.—In models of inflation driven by a single,

canonical scalar field, an extended phase of USR leads to a
null in all the primordial correlations at a specific wave
number kdip. We have considered scenarios in which the
null in the primordial correlations occurs over wave
numbers 1≲ kdip ≲ 10 Mpc−1. We show that future experi-
ments should have the sensitivity to detect a damping of
power in the HI signal due to the nulls at the level of the
power and bispectra.
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Appendix A: Inflationary scalar bispectrum.—In this
Appendix, we have plotted the bispectra in the equilateral
(i.e., when k1 ¼ k2 ¼ k3), squeezed (when k1 → 0 and
k2 ¼ −k3 ¼ k) and flattened (when k1 ¼ k2 ¼ k and
k3 ¼ 2k) limits. In Fig. 4, we have illustrated the dimen-
sionless quantities such as k6BSðkÞ in the equilateral and
flattened limits, and k31k

3BSðkÞ in the squeezed limit. We
find that a dip in the bispectra arises in all the limits at the

same location of the dip (viz. at kdip ¼ 7.6 Mpc−1) in the
power spectra.

Appendix B: Computation of power and bispectra of 21-
cm signal.—In this Appendix, we provide the details of the
computation of power and bispectra of the HI intensity
signal in terms of the primordial spectra.
At linear order in the perturbations, the density fluctua-

tions in HI follow the baryonic perturbations. This allows
us to express the fluctuating component of the HI signal in
the prereionization epoch as δTðxÞ ¼ ΔTbðzÞδHIðxÞ, where
δHIðxÞ denotes the inhomogeneities in the density of the
neutral gas. We shall ignore the redshift-space distortions in
our discussion. At small scales, these perturbations are
wiped out due to acoustic damping in the prerecombination
era and are regenerated by dark matter potential wells in the
postrecombination era. In linear theory, the baryonic
perturbations can be expressed in terms of the inflationary

FIG. 4. The scalar bispectra arising in the ST and CH models
have been illustrated in the equilateral (eq), squeezed (sq) and
flattened (fl) limits. As highlighted in the insets, the bispectra also
exhibit a sharp dip at the same location (i.e., at 7.6 Mpc−1) as the
power spectra in the previous figure.
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scalar power spectrum as PHIðk; zÞ ¼ T2ðk; zÞPSðkÞ,
where Tðk; zÞ is the transfer function for baryons de-
fined such that Tðk; zÞ tends to unity for small k (see,
for instance, Ref. [61]). This allows us to write the HI
intensity power spectrum at a redshift z in ðmKÞ2 as
follows:

P21ðk; zÞ ¼ ½ΔTbðzÞ�2T2ðk; zÞPSðkÞ: ðB1Þ

At any redshift, a fraction of baryons, say, fc, collapse to
form halos. The baryons in these halos remain neutral,
since for the parameters of interest, the masses of collapsed
halos are Oð106M⊙Þ and the virial temperature of these
halos is less than 1000 K, too small to ionize the gas via
collisional processes (we evade the free-free constraints on
the excess matter power discussed in Ref. [62]; also see
Ref. [63]). The HI intensity power spectrum from PF at a
given redshift in ðmKÞ2 is given by (in this context, see, for
instance, Ref. [64])

PPF
21ðk; zÞ ¼ ½fcΔTbðzÞ�2

k3

2π2
1

n̄
; ðB2Þ

where n̄ is the mean comoving number density of halos.
The collapsed fraction fc and the number density of halos n̄
at any redshift can be computed using the Press-Schecheter
formalism. For instance, in the CH model, at z ¼ 50, fc ¼
0.17 and n̄ ¼ 18754 Mpc−3, while at z ¼ 100, fc ¼
7 × 10−3, and n̄ ¼ 1549 Mpc−3. At both redshifts, the mass
function is dominated by halos of massM ≲ 5 × 105M⊙. At
z ¼ 27, n̄ ¼ 27638 Mpc−3 and fc ¼ 0.45, with halos of
M ≲ 2 × 106M⊙ making the most significant contribution
to the mass function. We have plotted the spectra P21ðk; zÞ
and PPF

21ðk; zÞ for the ST and CH models in Fig. 2.
Given the scalar bispectrum BSðk1; k2; k3Þ generated

during inflation, the HI intensity bispectrum at any redshift
can be expressed in units of ðmKÞ3 as

B21ðk1; k2; k3; zÞ ¼
½ΔTbðzÞ�3

2π2
Tðk1; zÞTðk2; zÞTðk3; zÞ

×
k31k

3
2k

3
3

ðk31 þ k32 þ k33Þ
BSðk1; k2; k3Þ: ðB3Þ

Also, the bispectrum from PF of discrete sources is given
by (see, e.g., Ref. [64])

BPF
21 ðk1;k2;k3;zÞ¼

f3ck31k
3
2k

3
3ΔTbðzÞ

ðk31þk32þk33Þn̄
�

−
2½ΔTbðzÞ�2

n̄

þP21ðk1Þ
k31

þP21ðk2Þ
k32

þP21ðk3Þ
k33

�

: ðB4Þ

We have presented the HI intensity bispectrum at redshifts
of z ¼ 27 and 50 in Fig. 3 along with the corresponding PF
computed at z ¼ 50.
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