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We consider a chain of interacting fermions with random disorder that was intensively studied in the
context of many-body localization. We show that only a small fraction of the two-body interaction
represents a true local perturbation to the Anderson insulator. While this true perturbation is nonzero at any
finite disorder strength W, it decreases with increasing W. This establishes a view that the strongly
disordered system should be viewed as a weakly perturbed integrable model, i.e., a weakly perturbed
Anderson insulator. As a consequence, the latter can hardly be distinguished from a strictly integrable
system in finite-size calculations at large W. We then introduce a rescaled model in which the true
perturbation is of the same order of magnitude as the other terms of the Hamiltonian, and show that the
system remains ergodic at arbitrary large disorder.
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Introduction.—The interplay between disorder and
interactions in quantum systems has recently attracted
significant interest. Some of the most exciting ideas were
formulated within the framework of many-body localiza-
tion (MBL), which is conjectured to be as a phase of matter
that violates ergodicity in spite of the presence of inter-
actions [1–7].
The disordered systems exhibit several unusual proper-

ties, in particular extremely slow dynamics [8–15] that was
frequently interpreted as a precursor to MBL [16–23].
However, one of the most important questions about MBL
is related to its stability in the thermodynamic limit. Until
recently, the results of essentially all studies in one-dimen-
sional (1D) spin-1=2 systems with disorder were inter-
preted in terms of a stable MBL phase [8–12,24–48].
Recent work has, however, highlighted robustness of
ergodicity at moderate disorder [49], which may eventually
suggest that the stability of MBL may not be taken for
granted. Signatures of robustness of ergodicity were also
reported in several subsequent works [14,15,50–54], and
they triggered, among others, activities to gain a better
insight into the avalanche theory of ergodicity breaking
transitions [55–62]. However, many recent numerical
studies are interpreted in terms of the existence of a stable
MBL phase [60,63–80]. Then, the MBL-to-thermal phase
transition may occur at much stronger disorders than
suggested by earlier numerical calculations [60].
Motivated by these open questions, it is an outstanding

problem to understand why exact numerical studies can
give rise to the formulation of contradictory expectations
for the same models in the thermodynamic limit. More
generally, what are the crucial ingredients of interacting

systems with disorder that make identification of their key
physical properties so challenging?
This Letter provides new perspective into studies of

robustness of ergodicity and its detection in finite systems.
For the model of interacting spinless fermions with disorder,
which is mappable onto the paradigmatic random-field
Heisenberg chain, we show that only a small fraction of
the two-body interaction represents a true local perturbation
to the Anderson insulator. The true perturbation becomes
smaller with increasing disorder. Eventually, the true
perturbation becomes too weak at very strong disorder to
be captured by finite-size numerical calculations. Con-
sequently, the strongly disordered system should be viewed
as a weakly perturbed Anderson insulator. As an application
of this insight, we introduce a rescaled model in which the
strength of the true perturbation matches the energy density
of the Anderson insulator. We argue that the latter model
remains ergodic at essentially any finite disorder, and show
that the matrix elements of observables are consistent with
the eigenstate thermalization hypothesis (ETH) [81–84].
Setup.—We study interacting fermions in a 1D disor-

dered lattice with L sites and periodic boundary conditions.
The system is described by the Hamiltonian H ¼ H0þ
HΔ, referred to as the standard model further on. The first
term describes the Anderson insulator,
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where ϵi is a random potential with box distribution,
−W ≤ ϵi ≤ W, a†i creates a spinless fermion at site i,
and ni ¼ a†i ai. The second term is the two-body inter-
action,

HΔ ¼ Δ
XL

i¼1

Ni; Ni ¼
�
ni −

1

2

��
niþ1 −

1

2

�
; ð2Þ

where we take Δ ¼ 1 so that H can be mapped onto to the
widely studied random-field Heisenberg model. The non-
interacting part (i.e., the integrable part) of the Hamiltonian
is diagonal in the Anderson basis

H0 ¼
X

α

εαQα þ const; Qα ¼ 2a†αaα − 1; ð3Þ

where aα ¼
P

i u
�
iαai and uiα ¼ hijαi are components of

the single-particle wave function of the Anderson state α.
As a central step of our approach, we split the interaction

term in Eq. (2) into two orthogonal parts,

HΔ ¼ Hk
Δ þH⊥

Δ; with hHk
ΔH

⊥
Δi ¼ 0; ð4Þ

where orthogonality is defined via the Hilbert-Schmidt
inner product as hABi ¼ ð1=ZÞTrðA†BÞ, the trace is carried
out over many-body states, and Z is the dimension of the

Fock space. In Eq. (4), Hk
Δ represents a projection of HΔ

onto local integrals of motion of the Anderson insulator;

thus ½Hk
Δ; H0� ¼ 0. As a consequence, we identify the

interaction in H⊥
Δ as a true perturbation to the Anderson

insulator, and we argue that it represents a local
Hamiltonian. The idea of our approach is sketched in
Fig. 1(a). Here, locality of operators (e.g., hi orNi) refers to
the size of their support in real space which is fixed and
does not grow with L. Linear combinations of the latter
operators (e.g., H0 or HΔ) are also considered as local.
Below we show that the squared norm of the true

perturbation kH⊥
Δk2 decays asymptotically for large W

as 1=W2, whereas the squared norm of the Anderson model
kH0k2 grows as W2. Then, for sufficiently large W, the
perturbation appears to be too weak to break integrability of
a finite system. Here, the squared norms of observables are
defined as kAk2 ¼ hAAi.
Local integrals of motion.—The traceless operators Qα

from Eq. (3) represent the one-body local integrals of
motion of the Anderson insulator. We briefly refer to them
as LIOMs. We sort them according to the maxima of the
single-particle wave functions uiα, i.e., we find iα ¼
maxi juiαj and sort them such that iα ≤ iα0 for α ≤ α0.
Roughly speaking, for open boundary conditions the
Anderson states with α ≪ L are localized at the left edge
of the system whereas the states with α ∼ L are localized at
the right edge. Importantly, a remarkable property of the
Anderson insulator is that not only the LIOMsQα are local,

but so also are their products, Qð2Þ
α;d ≡QαQαþd, provided

that the distance d ¼ 1;…; dmax is small compared with L
and dmax does not grow with the system size [86]. We

briefly refer to these Qð2Þ
α;d as two-body LIOMs.

It is straightforward to show that HΔ from Eq. (2) has no
projection on traceless LIOMs Qα; see the Supplemental
Material [85] for details. Therefore, we introduce an

operator Nk
i that is a linear combination of two-body

LIOMs, such that

Nk
i ¼

Xdmax

d¼1

XL

α¼1

hQð2Þ
α;dNiiQð2Þ

α;d; N⊥
i ¼ Ni − Nk

i : ð5Þ

The operatorNk
i can be interpreted as a projection of a local

interaction onto two-body LIOMs, and hence it corre-
sponds to an interaction that does not break integrability of
the Anderson insulator. In contrast, N⊥

i can be viewed as
the true perturbation.
We stress two important technical details. First, we only

consider results for dmax ¼ 2 in this Letter, whereas in the
Supplemental Material [85] we show that additional con-
tributions coming from dmax > 2 are negligible at strong
disorder. Second, in the Fock space that consists of 2L

many-body configurations, the occupations of LIOMs Qα

are independent and their products Qð2Þ
α;d are mutually

orthogonal and normalized, i.e., hQð2Þ
α;dQ

ð2Þ
α0;d0 i ¼ δα;α0δd;d0 .

As a consequence, Eq. (5) represents an orthogonal

projection for which hNk
i N

⊥
i i ¼ 0. However, the actual

calculations are carried out in a subspace with L=2
fermions, in which the LIOMs are not independent sinceP

α Qα ¼ 0, and their products are not traceless since

(a)

(b)

(c)

FIG. 1. (a) Sketch of the construction in Eq. (4). (b) Dependence
of kN⊥

i k2 on W, where various curves of the same color
correspond to different i but the same disorder realization [we
keep ϵi=W ¼ const when increasing W]. Various colors corre-
spond to different realizations of disorder. (c) Two statistical
properties of kN⊥

i k2 from 104 curves as those in (b): median and
minimum. Dashed line is the lower bound 1=ð8WÞ2; see the
Supplemental Material [85]. The results in (b),(c) are obtained at
L ¼ 14 and L=2 fermions.
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hQð2Þ
α;di ¼ Oð1=LÞ. Then, one needs to reorthogonalize the

set ofQð2Þ
α;d, as explained in the Supplemental Material [85].

Norm of the true perturbation.—We can now expressHk
Δ

and H⊥
Δ from Eq. (4) using Eq. (5) as

Hk
Δ ¼ Δ

XL

i¼1

Nk
i and H⊥

Δ ¼ Δ
XL

i¼1

N⊥
i : ð6Þ

Since Eq. (5) assures locality of Nk
i and N⊥

i , then Hk
Δ and

H⊥
Δ are also local as they are defined as linear combinations

of local operatorsNi andQ
ð2Þ
α;d. The physical meaning ofH⊥

Δ
can be understood by inspecting the identity (see the
Supplemental Material [85] for a derivation)

kH⊥
Δk2 ¼ kHΔk2 −

X

α;d

hHΔQ
ð2Þ
α;di2; ð7Þ

which shows that the more two-body LIOMs Qð2Þ
α;d one

takes, the smaller is the norm of H⊥
Δ . Indeed, the essence of

our approach is a systematic elimination of local contri-
butions to HΔ which commute with the integrable
Hamiltonian H0.
Figures 1(b) and 1(c) study the dependence on W of the

squared norms kN⊥
i k2 that contribute to the norm of H⊥

Δ in
Eq. (6). Each curve in Fig. 1(b) is obtained for a single site i
and a single realization of disorder, while Fig. 1(c) shows
the median and the minimum of 104 curves as those in
Fig. 1(b). One observes huge fluctuations between various
sites and disorder realizations. Nevertheless, at sufficiently
largeW all curves eventually decay as kN⊥

i k2 ∝ 1=W2; see
Fig. 1(b). For strong disorder we establish an L-indepen-
dent bound kN⊥

i k2 ≥ 1=ð8WÞ2, which accurately reprodu-
ces the numerical results in Fig. 1(c) already atW > 3. The
derivation of the bound and the L dependence of kN⊥

i k2 are
discussed in the Supplemental Material [85].
Summarizing this part, we stress that the perturbation to

the Anderson insulator is not determined by the entire
interaction term but rather by the projected operators N⊥

i .
This perturbation becomes very weak at strong disorder,
kN⊥

i k ∼ 1=W, but remains nonzero for arbitrary finite W.
Obviously, such a small but nonvanishing perturbation
poses a challenge for finite-size numerical calculations.
Ergodicity in the rescaled model.—We complement the

above analysis by introducing a model in which the norm of
the true perturbation does not vanish with increasingW. To
this end we study the rescaled model Hamiltonian

H̃ ¼
X

i

hi þ
X

i

khik
kN⊥

i k
N⊥

i ; ð8Þ

where hi denotes the local term (the energy density
operator) of the Anderson model from Eq. (1) and N⊥

i

represents the density of the true perturbation from Eq. (6).
Both energy density operators hi and Ni are defined on the
link between sites i and iþ 1.
The rescaled model [Eq. (8)] associates the strength of

the perturbation with the strength of the disorder. In
particular, the energy density of the true perturbation,
cf. the second term on the rhs of Eq. (8), equals to the
energy density of the Anderson insulator, for which the
squared norm is khik2 ¼ ð2þ ϵ2i þ ϵ2iþ1Þ=16. In the stan-
dard model, this roughly corresponds to the regime Δ ∝ W,
for which one may expect an ergodic-to-nonergodic tran-
sition. (The nonergodic phase is conjectured to be re-
entrant as a function of the interaction strength; see, e.g.,
Fig. 1 in Ref. [12].) Below we explore robustness of
ergodicity in the rescaled model [Eq. (8)].
As a simple test of ergodicity we study the average ratio

of nearest level spacings hri (i.e., the gap ratio); see the
Supplemental Material [85] for a definition. The results are
shown in Fig. 2(a) for the standard model H from Eqs. (1)
and (2) and in Fig. 2(b) for the rescaled model H̃ from
Eq. (8). In the standard model the results clearly deviate
from the value r ≃ 0.53 in the Gaussian orthogonal
ensemble (GOE) already at W ≳ 3, which was observed
in many previous studies; see, e.g., Ref. [29]. However, the
rescaled model remains ergodic at essentially all disorders,
provided that the system is sufficiently large. As an
additional test, we determine a distribution of r without
any averaging, i.e., via collecting results from different
disorder realizations as well as different eigenstates (from
the middle third of the spectra). The inset of Fig. 2(b) shows
the resulting probability density function PðrÞ at various L.
A comparison with analytical results [3,85,87–89] confirms
that at large L the results approach the GOE prediction even
at W ¼ 100.

(a)
(b)

FIG. 2. Average gap ratio hri at various L and W calculated
in subspaces with L=2 fermions for (a) the standard model H
from Eqs. (1) and (2), and (b) the rescaled model H̃ from
Eq. (8). The averaging is carried out over Z=3 levels from the
middle of the spectrum and over 4000 realizations of disorder.
Inset in (b): probability density function PðrÞ in the rescaled
model at W ¼ 100 and various L. Dash-dotted and dashed lines
show the analytical predictions for the Poisson distribution [3]
and the GOE [87,88], respectively (see also the Supplemental
Material [85]).
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ETH analysis.—Finally, we test ergodicity of the
rescaled Hamiltonian by studying the ETH. As observables
we consider site occupations Ai ¼ 2ni − 1. Note that a
linear combination of Ai, the imbalance I ¼ P

ið−1ÞiAi,
has been commonly studied in the context of ergodic-
nonergodic transition and is accessible in cold-atom ex-
periments [90]. Following a standard procedure [83],
we calculate the diagonal matrix elements ðAiÞm ¼
hEmjAijEmi where jEmi are the many-body eigenstates
of either the standard Hamiltonian H, or the rescaled
Hamiltonian H̃; see Fig. 3. In a finite system described
by the standard model, one observes ðAiÞm ¼ �1 at all
energies at strong disorder [see Figs. 3(c) and 3(e)], and
hence the ETH appears to be violated, suggesting non-
ergodic behavior. However, in the rescaled model the
fluctuations of matrix elements are rather modest even at
extremely strong disorder W ¼ 100; see Fig. 3(f).
To study fluctuations of the diagonal matrix elements we

calculate the average eigenstate-to-eigenstate fluctuations
[91–93],

hδAi ¼ 1=Z
X

m

jðAiÞmþ1 − ðAiÞmj; ð9Þ

where the averaging is carried out over Z ¼ Z=5 states
from the middle of the many-body spectrum. Figure 4
shows the probability density functions, fðhδAiÞ, calcu-
lated at a single lattice site and different disorder realiza-
tions, for both the standard and the rescaled model. In the
standard model one obtains hδAi ≃ 1 at large disorder
[cf. Figs. 4(c) and 4(e)], and the absence of any visible L
dependence of the distributions may be interpreted as a
violation of the ETH. In the rescaled model the distribution
of hδAi is rather broad for the accessible system sizes.
Nevertheless hδAi appears to decay with L suggesting
hδAi → 0 in the thermodynamic limit. Because of the width
of the distributions, one cannot unambiguously confirm
exponential decay of the latter quantity. However, such a
decay is strongly suggested by the decay of the median; see
also the Supplemental Material [85].
Conclusions.—The main goal of this Letter was to

identify the origin of complexity that emerges in the
numerical studies of ergodicity in interacting fermions
subject to random disorder. We showed that the two-body

FIG. 3. Diagonal matrix elements ðAiÞm ¼ hEmjAijEmi, where
Ai ¼ 2ni − 1, at L ¼ 16 and differentW. Results are shown for a
single site i and a single realization of disorder. (a), (c), and
(e) The standard model H from Eqs. (1) and (2). (b), (d), and
(f) The rescaled model H̃ from Eq. (8). We rescale the energies as
Ẽm ¼ Em=jE0j, where E0 is the ground state energy.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Probability density function f of the eigenstate-to-
eigenstate fluctuations hδAi from Eq. (9) for various L. The
distributions are calculated at single lattice site and different
realizations of disorder for (a), (c), (e) the standard model H and
(b), (d), (f) the rescaled model H̃.
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interaction term HΔ [Eq. (2)] cannot be considered as a
perturbation to the Anderson insulator H0 [Eq. (1)] since
only a small fraction of the two-body interaction, denoted
asH⊥

Δ , does not commute withH0. We referred to the latter
as the true local perturbation, and we showed that its
relative norm decays with disorder as kH⊥

Δk=kH0k ∼W−2.
On the other hand, the norm is also bounded from below, so
it remains nonzero at large but finite W. It is then clear that
the interpretation of finite-size numerical calculations at
large W is challenging since finite integrable systems with
small perturbations are hardly distinguishable from strictly
integrable systems.
It appears that the two regimes in which interpretation of

numerical results has rather low ambiguity are the regime
of small and moderate W, for which robustness of ergo-
dicity was already established, and the regime where the
strength of the true local perturbation H⊥

Δ is rescaled. Here
we considered the latter scenario and introduced a rescaled
model in which the energy density of the perturbation
equals that of the Anderson insulator. Studying the short-
range level statistics and the ETH indicators in the rescaled
model we showed that ergodicity persists up to extremely
strong disorders, such as W ¼ 100.
While focusing on 1D interacting fermions with random

disorder, the main idea of our approach can be applied to an
arbitrary model in any dimension. In particular, the method
of identifying the true local perturbation allows for an
unambiguous classification of the perturbation strength,
and hence provides a new perspective into distinction
between weakly and strongly perturbed integrable systems.
Systems of broad interest to which the method can
straightforwardly be applied in the near future are interact-
ing fermions subject to quasiperiodic [94] or linear [95,96]
potentials.
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[45] N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings
across the Many-Body Localization Transition, Phys. Rev.
Lett. 123, 180601 (2019).

[46] S. Roy, J. T. Chalker, and D. E. Logan, Percolation in Fock
space as a proxy for many-body localization, Phys. Rev. B
99, 104206 (2019).

[47] S. Roy and D. E. Logan, Fock-space correlations and the
origins of many-body localization, Phys. Rev. B 101,
134202 (2020).

[48] M. Tarzia, Many-body localization transition in Hilbert
space, Phys. Rev. B 102, 014208 (2020).

[49] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Ergodicity
breaking transition in finite disordered spin chains, Phys.
Rev. B 102, 064207 (2020).

[50] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum
chaos challenges many-body localization, Phys. Rev. E 102,
062144 (2020).

[51] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer,
and J. Sirker, Evidence for Unbounded Growth of the
Number Entropy in Many-Body Localized Phases, Phys.
Rev. Lett. 124, 243601 (2020).

[52] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer,
and J. Sirker, Slow delocalization of particles in many-body
localized phases, Phys. Rev. B 103, 024203 (2021).

[53] T. LeBlond, D. Sels, A. Polkovnikov, and M. Rigol,
Universality in the onset of quantum chaos in many-body
systems, Phys. Rev. B 104, L201117 (2021).

[54] D. Sels and A. Polkovnikov, Thermalization of dilute
impurities in one dimensional spin chains, arXiv:
2105.09348.

[55] W. De Roeck and F. Huveneers, Stability and instability
towards delocalization in many-body localization systems,
Phys. Rev. B 95, 155129 (2017).

[56] D. J. Luitz, F. Huveneers, and W. De Roeck, How a Small
Quantum Bath can Thermalize Long Localized Chains,
Phys. Rev. Lett. 119, 150602 (2017).

[57] T. Thiery, F. Huveneers, M. Müller, and W. De Roeck,
Many-Body Delocalization as a Quantum Avalanche, Phys.
Rev. Lett. 121, 140601 (2018).

[58] P. J. D. Crowley and A. Chandran, Avalanche induced
coexisting localized and thermal regions in disordered
chains, Phys. Rev. Res. 2, 033262 (2020).

[59] D. Sels, Bath-induced delocalization in interacting
disordered spin chains, Phys. Rev. B 106, L020202
(2022).

[60] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz,
and D. A. Huse, Avalanches and many-body resonances in
many-body localized systems, Phys. Rev. B 105, 174205
(2022).

[61] J.Šuntajs and L. Vidmar, Ergodicity Breaking Transition in
Zero Dimensions, Phys. Rev. Lett. 129, 060602 (2022).

[62] P. J. D. Crowley and A. Chandran, Mean field theory of
failed thermalizing avalanches, Phys. Rev. B 106, 184208
(2022).

PHYSICAL REVIEW LETTERS 129, 260601 (2022)

260601-6

https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.81.134202
https://doi.org/10.1103/PhysRevB.81.134202
https://doi.org/10.1103/PhysRevE.85.050102
https://doi.org/10.1103/PhysRevE.85.050102
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.92.014208
https://doi.org/10.1103/PhysRevB.92.014208
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1103/PhysRevB.93.041424
https://doi.org/10.1103/PhysRevB.93.041424
https://doi.org/10.1103/PhysRevB.94.144201
https://doi.org/10.1103/PhysRevB.94.144201
https://doi.org/10.1103/PhysRevB.94.224207
https://doi.org/10.1103/PhysRevB.94.180401
https://doi.org/10.1103/PhysRevB.94.180401
https://doi.org/10.1103/PhysRevB.94.201112
https://doi.org/10.1103/PhysRevX.7.021013
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevLett.118.016804
https://doi.org/10.1088/1742-5468/aa9338
https://doi.org/10.1103/PhysRevB.97.201105
https://doi.org/10.1103/PhysRevB.99.104205
https://doi.org/10.1103/PhysRevB.99.104205
https://doi.org/10.1103/PhysRevB.99.174313
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevB.99.104206
https://doi.org/10.1103/PhysRevB.99.104206
https://doi.org/10.1103/PhysRevB.101.134202
https://doi.org/10.1103/PhysRevB.101.134202
https://doi.org/10.1103/PhysRevB.102.014208
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1103/PhysRevB.104.L201117
https://arXiv.org/abs/2105.09348
https://arXiv.org/abs/2105.09348
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevResearch.2.033262
https://doi.org/10.1103/PhysRevB.106.L020202
https://doi.org/10.1103/PhysRevB.106.L020202
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevLett.129.060602
https://doi.org/10.1103/PhysRevB.106.184208
https://doi.org/10.1103/PhysRevB.106.184208


[63] R. K. Panda, A. Scardicchio, M. Schulz, S. R. Taylor, and
M. Žnidarič, Can we study the many-body localisation
transition?, Europhys. Lett. 128, 67003 (2020).

[64] P. Sierant, D. Delande, and J. Zakrzewski, Thouless
Time Analysis of Anderson and Many-Body Localization
Transitions, Phys. Rev. Lett. 124, 186601 (2020).

[65] P. Sierant, M. Lewenstein, and J. Zakrzewski, Polynomially
Filtered Exact Diagonalization Approach to Many-Body
Localization, Phys. Rev. Lett. 125, 156601 (2020).

[66] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan,
V. Khemani, S. Parameswaran, F. Pollmann, A. Potter, M.
Serbyn, and R. Vasseur, Distinguishing localization from
chaos: Challenges in finite-size systems, Ann. Phys.
(Amsterdam) 427, 168415 (2021).

[67] Á. L. Corps, R. A. Molina, and A. Relaño, Signatures of a
critical point in the many-body localization transition,
SciPost Phys. 10, 107 (2021).

[68] A. Prakash, J. H. Pixley, and M. Kulkarni, Universal spectral
form factor for many-body localization, Phys. Rev. Res. 3,
L012019 (2021).

[69] J. Schliemann, J. V. I. Costa, P. Wenk, and J. C. Egues,
Many-body localization: Transitions in spin models, Phys.
Rev. B 103, 174203 (2021).

[70] M. Hopjan, G. Orso, and F. Heidrich-Meisner, Detecting
delocalization-localization transitions from full density dis-
tributions, Phys. Rev. B 104, 235112 (2021).

[71] A. Solórzano, L. F. Santos, and E. J. Torres-Herrera, Multi-
fractality and self-averaging at the many-body localization
transition, Phys. Rev. Res. 3, L032030 (2021).

[72] G. De Tomasi, I. M. Khaymovich, F. Pollmann, and S.
Warzel, Rare thermal bubbles at the many-body localization
transition from the Fock space point of view, Phys. Rev. B
104, 024202 (2021).

[73] P. J. D. Crowley and A. Chandran, A constructive theory of
the numerically accessible many-body localized to thermal
crossover, SciPost Phys. 12, 201 (2022).

[74] R. Ghosh and M. Žnidarič, Resonance-induced growth of
number entropy in strongly disordered systems, Phys. Rev.
B 105, 144203 (2022).

[75] N. Bölter and S. Kehrein, Scrambling and many-body
localization in the XXZ chain, Phys. Rev. B 105, 104202
(2022).

[76] Y. Zhang and Y. Liang, Optimizing randomized potentials
for inhibiting thermalization in one-dimensional systems,
Phys. Rev. Res. 4, 023091 (2022).

[77] P. Sierant and J. Zakrzewski, Challenges to observation of
many-body localization, Phys. Rev. B 105, 224203 (2022).

[78] J. Sutradhar, S. Ghosh, S. Roy, D. E. Logan, S. Mukerjee,
and S. Banerjee, Scaling of the Fock-space propagator and
multifractality across the many-body localization transition,
Phys. Rev. B 106, 054203 (2022).

[79] F. B. Trigueros and C.-J. Lin, Krylov complexity of many-
body localization: Operator localization in Krylov basis,
SciPost Phys. 13, 037 (2022).

[80] D. Z. Shi, V. Khemani, R. Vasseur, and S. Gopalakrishnan,
Many body localization transition with correlated disorder,
Phys. Rev. B 106, 144201 (2022).

[81] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[82] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

[83] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[84] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical
mechanics and thermodynamics, Adv. Phys. 65, 239
(2016).

[85] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.260601 for reor-
thogonalization of LIOMs in the subspace with fixed
number of fermions, absence of projection of HΔ on
LIOMs, derivation of Eq. (7) and the lower bound on the
norm of the true perturbation, the details about the nearest
level spacing analysis and the fluctuations of the diagonal
matrix elements.

[86] In contrast, in translationally invariant integrable models the
products of local charges are typically nonlocal thus, in the
thermodynamic limit, they have no projection on local
observables.

[87] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux,
Distribution of the Ratio of Consecutive Level Spacings
in RandomMatrix Ensembles, Phys. Rev. Lett. 110, 084101
(2013).

[88] M. Fremling, Exact gap-ratio results for mixed Wigner
surmises of up to 4 eigenvalues, arXiv:2202.01090.
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