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Multipartite entanglement plays an essential role in both quantum information science and many-body
physics. Because of the exponentially large dimension and complex geometric structure of the state space,
the detection of entanglement in many-body systems is extremely challenging in reality. Conventional
means, like entanglement witness and entropy criterion, either highly depend on the prior knowledge of
the studied systems or the detection capability is relatively weak. In this Letter, we propose a framework
for designing multipartite entanglement criteria based on permutation moments, which have an effective
implementation with either the generalized control-SWAP quantum circuits or the random unitary
techniques. As an example, in the bipartite scenario, we develop an entanglement criterion that can
detect bound entanglement and show strong detection capability in the multiqubit Ising model with a long-
range XY Hamiltonian. In the multipartite case, the permutation-moment-based criteria can detect
entangled states that are not detectable by any criteria extended from the bipartite case. Our framework
also shows potential in entanglement quantification and entanglement structure detection.
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The past decades have witnessed great progress in under-
standing quantum entanglement [1]. To date, entanglement
acts not only as the cornerstone of quantum information
science, but also as a new perspective in many other fields,
like quantum thermodynamics [2,3], condensed matter
physics [4], and quantum gravity [5]. Especially in many-
body physics, the dynamical behavior, scaling property, and
spectral form of entanglement are key indicators to charac-
terize different phases of the system [6,7].
As a resource that cannot be produced by local oper-

ations and classical communication, entangled k-partite
states are those that cannot be written in a separable form,
ρ ¼ P

i piρ
i
1 ⊗ � � � ⊗ ρik, where pi ≥ 0 satisfies the nor-

malization condition
P

i pi ¼ 1 and ρir is the density matrix
of the rth subsystem. As the dimension of a quantum
system grows exponentially with the number of qubits, the
geometric structure of state space becomes highly compli-
cated, making entanglement detection a resource-consum-
ing task. In fact, determining whether a state is entangled or
not is generally a NP-hard problem [8]. For pure states or
states with enough prior knowledge, entanglement can be
effectively detected by purity measurements [3,9], varia-
tional algorithms [10], or entanglement witness [11,12].
While in the noisy intermediate-scale quantum era [13], the
processed states are usually disturbed by unpredictable
noise, rendering the detection capability of conventional
means ineffective. Consequently, it is important to find
implementable and efficient methods to detect multipartite
entanglement with state-of-the-art devices.

For a generic mixed multipartite state without prior
knowledge, there are two commonly used techniques to
detect entanglement: density matrix moments and index
permutation. Moments of density matrix, trðρnÞ, carry
much information about the states and are relatively easy
to measure [14–16]. Hence, they become practical tools in
estimating properties of quantum systems [17], including
quantum entanglement [11,18–21]. However, most
moment-based entanglement criteria are specially designed
for states with few parties or low dimensions. A general
moment-based entanglement-detection framework for
multipartite systems is still missing.
Based on the rearrangement of density matrix elements,

the index permutation criterion [22] can be applied in
systems with an arbitrary number of parties and dimensions
and has many generalizations [23]. In general, a k-partite
quantum state can be represented using a matrix with 2k
indices,

ρ ¼
X

s1;…;s2k

ρs1s2;…;s2k−1s2k js1 � � � s2k−1ihs2 � � � s2kj; ð1Þ

where s1; s3;…; s2k−1 represent the row indices, and
s2; s4;…; s2k represent the column ones. The two indices,
s2r−1 and s2r, denote for the rth subsystem. By changing
the order of these 2k indices, one gets a new matrix,RπðρÞ,
with

½RπðρÞ�s1s2;…;s2k−1s2k ¼ ρsπð1Þsπð2Þ;…;sπð2k−1Þsπð2kÞ ; ð2Þ
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where π is an element of 2kth permutation group S2k.
For simplicity, hereafter, we useRπ to denoteRπðρÞ. Using
the property of index permutation, one could prove
that [22]

kRπk ¼ tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

RπR
†
π

q �
¼

X
i

λi ≤ 1; ð3Þ

for all k-partite separable states, where fλig are the singular
values of Rπ . The violation of this inequality indicates
entanglement. In the bipartite scenario, when setting π to be
(1,2) and (2,3), where ð·; ·Þ denotes exchanging two indices,
one gets the widely used positive partial transposition
(PPT) criterion [24] and the computable cross norm
(CCNR) criterion [25], respectively. However, because
index permutation is an unphysical operation, and the
permutation criteria are based on singular value decom-
position, a highly nonlinear operation, measurement of
kRπk usually requires full state tomography, which is
extremely resource-consuming [26].
To harness the power of permutation criteria in multi-

partite entanglement detection, we borrow the idea from
moment criteria. Although it is generally hard to measure
kRπk directly, one can alternatively estimate the higher-
order moments, Mπ

2n ¼ tr½ðRπR
†
πÞn� ¼ P

i λ
2n
i , which are

much easier to access. These permutation moments can
help to lower bound kRπk ¼ P

i λi and infer whether the
state is multipartite entangled or not. A similar idea has also
been used in the estimation of quantum negativity [27,28]

and entropy [17]. By changing the index permutation
operation Rπð·Þ and measuring different orders of
moments, we generate a series of implementable multipar-
tite entanglement criteria, which we call “moment-based
permutation criteria.” The entanglement detection flow-
chart is shown in Fig. 1.
Moment-based permutation criteria.—For multipartite

quantum state ρ, each party has two indices, one for row
and one for column. Given Rπ , all the parties can be
divided into four types based on the position transition of
their two indices, as shown in the first line of Table I.
We find two properties of index permutation. First, if a

party is T1 type or T2 type forRπ, then it will keep the type
for R†

π; while if it is R1 type or R2 type for Rπ, then it
becomes R2 type or R1 type for R†

π, respectively. Second,
the indices contraction in Mπ

2n ¼ tr½ðRπR
†
πÞn� only acts on

the indices from the same party of the 2n copies of ρ.
Hence, if we list these 2n copies of states in order, the
indices from an R-type party will contract with one of its
two neighboring states and the indices from a T-type party
will contract with both of its neighboring states. Note that
Rπ might not be a square matrix, so its odd moments are
generally inaccessible.
Based on these results, we can prove that Mπ

2n can be
measured directly by a joint observable.
Theorem 1: Given a k-partite state ρ and the index

permutation operation Rπ , the 2nth moment of Rπ ,
Mπ

2n ≔ tr½ðRπR
†
πÞn�, can be estimated by observable meas-

urement on 2n copies of ρ,

FIG. 1. Flowchart of entanglement detection. To detect multi-
partite entanglement of ρ, one needs to first choose an index
permutation operation Rπð·Þ and set kRπðρÞk ¼ P

i λi as the
entanglement indicator. Then, one measures the permutation
moments fMπ

2n ¼
P

i λ
2n
i gn and uses these moments to lower

bound kRπðρÞk. If the lower bound is larger than the entangle-
ment threshold set for kRπðρÞk, the multipartite entanglement is
successfully detected. Otherwise, one can measure higher-order
moments or pick another index permutation and repeat the
procedure.

TABLE I. We use the tensor network to illustrate the four kinds
of parties and their second and fourth moments. The boxes
represent the subsystems of a generic k-partite state, and the two
legs represent the row and column indices. The gray dashed lines
represent periodic boundary condition. From the second line, one
can find that the operators to estimate the second moments
for all these four kinds of parties are the SWAP operators,
which are represented by changing the order of two legs. Hence,
trðRπR

†
πÞ ¼ trðρ2Þ for all π ∈ S2k. From the third line, one can

find that the operators to estimate tr½ðRπR
†
πÞ2� for R-type parties

are still SWAP operators, while the operators for T-type parties are
cyclic permutation operators, which are represented by changing
the order of the four legs cyclically.

Type T1 T2 R1 R2

Rπ

trðRπR
†
πÞ

tr½ðRπR
†
πÞ2�

PHYSICAL REVIEW LETTERS 129, 260501 (2022)

260501-2



Mπ
2n ¼ trðOπ

2nρ
⊗2nÞ ¼ 1

2
tr

��
⨂
k

i¼1

Uπ
i þ H:c:

�
ρ⊗2n

�
: ð4Þ

For T1-type parties, Uπ
i ¼ Π⃗i, and for T2-type parties,

Uπ
i ¼ Π⃖i. Here, Π⃗ and Π⃖ are the cyclic permutation

operators in different directions, satisfying Π⃗js1;…; s2ni ¼
js2n; s1;…; s2n−1i and Π⃖js1;…; s2ni ¼ js2;…; s2n; s1i. For
R1-type parties Uπ

i ¼ Sð2n;1Þ
i ⊗ Sð2;3Þ

i ⊗ � � � ⊗ Sð2n−2;2n−1Þ
i

and for R2-type parties Uπ
i ¼Sð1;2Þ

i ⊗Sð3;4Þ
i ⊗���⊗Sð2n−1;2nÞ

i ,
where Sðu;vÞ is the SWAP operator acting on the uth and vth
copies.
We leave the proofs of theorems in the Supplemental

Material [29]. The special cases of partial transposed and
realigned moments for a two-qubit system have been
discussed in Refs. [38,39].
Borrowing the ideas from [14,39,40], by introducing an

ancilla qubit, we can design a quantum circuit to measure
Mπ

2n based on the control-unitary operations; see Fig. 2. As
the SWAP operators are the generators of the permutation
group, all the control-unitary operators in this circuit can be
decomposed into a polynomial number of the 3-qubit
control-SWAP operators.
However, the simultaneous preparation of 2n identical

copies of ρ is greatly challenging for state-of-the-art
quantum devices. Fortunately, the recently developed
techniques, shadow estimation [41,42] and randomized
measurements [9,15,16], provide means to measure these
moments by local (single-qubit) or global (multiqubit)
single-copy operations. Practically speaking, global oper-
ations are still challenging, and local protocols are the ones
commonly used in real experiments. Shadow estimation
has a wide range of applications while inefficient in
general. Randomized measurement has lower sample
complexities, while it can only measure some specialized
physical quantities. In Supplemental Material [29], we
propose the measurement of the permutation moments
using these two protocols and a hybrid one and analyze
their sample complexities.

In the bipartite scenario,Mð1;2Þ
n ¼trf½Rð1;2Þ�ng¼tr½ðρTA

ABÞn�
andMð2;3Þ

2n are key quantities that help to construct the weak-
formPPT criteria [28,43,44] and the criteria proposed later in
Eq. (7) and Eq. (8), respectively. The local randomized
measurements scheme is not applicable for the measurement

of Mð1;2Þ
n [45]. The existing single-copy local protocol for

measuring Mð1;2Þ
n requires the shadow scheme, while,

according to Theorem 1, the observables for measuring

Mð2;3Þ
2n have a simple form. Thus, Mð2;3Þ

2n can be measured
through the local randomized measurements protocol and
have a much lower sample complexity. We list the sample

complexities of measuring Mð1;2Þ
3 and Mð2;3Þ

4 in Table II.
To find the lower bound of kRπk ¼ P

i λi using these
moments, one needs to solve an optimization problem. The
original optimization problem is extremely hard to solve
because we have an exponentially large number of λi.
Adopting the Lagrange multiplier method, we can simplify
the optimization to a problem of solving a set of polynomial
equations.
Theorem 2: The minimum value of kRπk given

Mπ
2;…;Mπ

2n is reached when there are at most n nonzero
λis. Thus, denote the solution of this problem to be Eπ

2nðρÞ,
it is equal to the solution of the following optimization
problem,

min
q1;…;qn∈N

Eπ
2nðρÞ ¼ q1λ1 þ q2λ2 þ � � � þ qnλn

s:t:
Xn
i¼1

qiλ2i ¼ Mπ
2;…;

Xn
i¼1

qiλ2ni ¼ Mπ
2n

q1 þ q2 þ � � � þ qn ≤ L; ð5Þ

where L is the number of the singular values ofRπ and qi is
the degeneracy of singular value λi.
As a special case, when we only know the value of Mπ

2

andMπ
4 , the minimum of

P
i λi has an analytical form [46]:

Eπ
4ðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqMπ

2 þ UÞ
qþ 1

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mπ

2 − U
qþ 1

s
; ð6Þ

where q¼bðMπ
2Þ2=Mπ

4c and U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqþ1ÞMπ

4−qðMπ
2Þ2

p
.

FIG. 2. Quantum circuit for measuring Mπ
2n. Inputs of this

algorithm are 2n identical copies of ρ and an ancilla qubit. The
quantum gates in this circuit include Hadamard gates, labeled
with H, and the control-Uπ

i gate. The measurement of the ancilla
qubit is in computational basis.

TABLE II. This table shows the best-known sample complex-
ities of measuring Mð1;2Þ

3 and the complexities of protocols

developed in Supplemental Material [29] to measure Mð2;3Þ
4 . D

is the dimension of the underlying Hilbert space. This table shows
a nearly quadratic improvement in the local case.

Global protocol Local protocol

Mð1;2Þ
3

OðD2
3Þ [45] OðD2Þ [43]

Mð2;3Þ
4

OðD1
2Þ OðD1.187Þ
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Now, we can formally represent the moment-based
permutation criteria as

Eπ
2nðρÞ ≤ 1; ∀ π ∈ S2k; n ∈ N ð7Þ

for all separable k-partite state ρ. In fact, Eπ
2nð·Þ may not

necessarily be the function of ρ. Adopting the bipartite
entanglement criterion introduced in Ref. [23], we get

Eð2;3Þ
2n ðρAB − ρA ⊗ ρBÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − trρ2AÞð1 − trρ2BÞ

q
ð8Þ

for separable ρAB.
Bipartite entanglement detection.—Compared with

existing entanglement detection schemes based on partial
transposed moments [28,43,44], this framework is not only
a direct generalization to multipartite entanglement, but
also enhances the detection capability in the bipartite
scenario. With the second and fourth moments only,
Eq. (8) can detect 3 × 3-dimensional bound entanglement
constructed using the unextendible product basis proposed
in Ref. [47]. We leave the detailed discussion in the
Supplemental Material [29].
The criterion of Eq. (8) also performs well in practical

physical systems. We study the local bipartite entanglement
dynamics in a quantum system evolved under a long-range
XY Hamiltonian. Specifically, we choose a 10-qubit open
boundary Ising model with the Hamiltonian of the form

HXY ¼
X
i<j

Jijðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ þ Bz

X
i

σ̂zi ; ð9Þ

where σ̂zi , σ̂
þ
i , and σ̂−i are the spin-1

2
Pauli-Z, raising, and

lowering operator acting on the ith qubit; Jij¼ðJ0=ji−jjαÞ
is the interaction strength following the power-law decay
with J0 and α set to be 420 s−1 and 1.24, respectively [9];
Bz stands for transverse field and is set to be 400 s−1. This
Hamiltonian has been realized in real physical systems
[9,48] and has often served as the benchmark of detection
capabilities of entanglement criteria [43,44].
The 10-qubit chain is divided into three parts, A, B,

and C, where A and B constitute the local system we
study, initialized to be ð1= ffiffiffi

2
p Þðj0i⊗NAB þ j1i⊗NABÞ. C acts

as the bath, which is initialized to be the tensor product of
j0i. We compare four implementable nonlinear criteria in
investigating the entanglement dynamics of systems com-
posed of A and B. The first two criteria are Eqs. (7) and (8),

when setting π ¼ ð2; 3Þ and n ¼ 2, labeled by Eð2;3Þ
4 and

E�
4, respectively. Others are the entropy criterion based

on the comparison of the purities [1], labeled by P2; and

the weak-form PPT criterion based on Mð1;2Þ
3 ¼ tr½ðρTA

ABÞ3�
[28,44], labeled by P3. We define four quantities to
represent these criteria that satisfy that EðρÞ > 0 if and
only if the entanglement is detected by the corresponding
criterion.

The numerical simulation results [49] are shown in
Fig. 3. One could find that the moment-based permutation
criteria, especially E�

4, have an obvious advantage since
they detect entanglement while all others fail in various
time periods and different choices of A and B.
In addition to the strong detection capability, the key

quantities in this framework, Eπ
2nðρÞ, have clear mathemati-

cal meaning as they give the lower bounds of the permu-
tation norms. The permutation norms, including
entanglement negativity, can be treated as entanglement
measures. We thus conjecture that these quantities can also
be used as entanglement measures. In Supplemental
Material [29], we support this conjecture by showing that

Eð2;3Þ
4 ðρÞ can witness the entanglement scaling transition in

a quantum dynamical phase transition [6,50–52] and the
entanglement rainbow structure for the eigenstates of a
thermal Hamiltonian [2,53,54].
Multipartite entanglement detection.—Another advan-

tage of our framework lies in multipartite entanglement
detection. There exist multipartite entangled states that are
separable in any bipartition and thus cannot be detected by

FIG. 3. Local entanglement decay in thermal system. The
entanglement dynamics of the local systems A and B, which
are marked by squares and initialized to be jψðt ¼ 0ÞiAB ¼
ð1= ffiffiffi

2
p Þðj0i⊗NAB þ j1i⊗NABÞ. Qubits without squares are initia-

lized to be the tensor product of j0ih0j, act as part C. The
entanglement of AB is detected when the value is above zero for
each criterion. The gray areas represent the time periods in which
the entanglement can only be detected by the E�

4 criterion.
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any criteria extended from the bipartite case [55], including
the PPT and CCNR criteria. Theorem 2 provides us new
means to design practical entanglement criteria for these
states. We depict the sets of detectable multipartite
entangled states of different criteria in Fig. 4.
An important example is also based on the unextendible

product basis [47]. Consider a three-qubit system and
define four product pure states

fjψiig4i¼1¼fj0;1;þi; j1;þ;0i; jþ;0;1i; j−;−;−ig; ð10Þ

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
. It has been proved that the

state

ρ ¼ 1

4

�
I8 −

X4
i¼1

jψ iihψ ij
�

ð11Þ

is separable in any bipartition and thus its detection needs a
new kind of moment-based permutation criterion other than
PPT and CCNR. We find that when setting π ¼ ð1;2;3;4;5;6

1;3;2;4;5;6Þ,
realigning the first two parties and keeping the third party
unchanged, the entanglement of this state can be detected
using Eπ

8ðρÞ, which only requires 4 orders of moments. We
leave some details of calculating Eπ

8ðρÞ in Supplemental
Material.
For multipartite quantum systems, entanglement can have

a rather complex entanglement structure [56]. At the same
time, the tools for detecting entanglement structure are quite
restrictive [57]. In Supplemental Material [29], we show that

our framework can also be generalized to detect the multi-
partite entanglement structure.
Outlook.—The techniques we developed in this Letter,

including the moment measurements and bounding the
lower-order moment using the higher-order moments, have
many potential applications, like positive map entangle-
ment detection [11] and trace distance estimation.
Furthermore, it is also interesting to investigate how to
generalize the framework to entanglement detection in
continuous variable systems [58].
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