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It is now widely accepted that quenches through the critical region of quantum phase transitions result in
post-transition states populated with topological defects—analogs of the classical topological defects.
However, consequences of the very nonclassical fact that the state after a quench is a superposition of
distinct, broken-symmetry vacua with different numbers and locations of defects have remained largely
unexplored. We identify coherent quantum oscillations induced by such superpositions in observables
complementary to the one involved in symmetry breaking. These oscillations satisfy Kibble-Zurek
dynamical scaling laws with the quench rate, with an instantaneous oscillation frequency set primarily by
the gap of the system. In addition to the obvious fundamental significance of a superposition of different
broken symmetry states, quantum coherent oscillations can be used to verify unitarity and test for
imperfections of the experimental implementations of quantum simulators.
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Motivation.—Studies of quenches through a symmetry-
breaking quantum phase transition at a finite rate have been
to a large extent focused on the generation of topological
defects. This was clearly the first thing to do, as topological
defects are stable and the obvious focus of interest in the
classical (i.e., thermodynamic) nonequilibrium phase tran-
sitions. By contrast, quantum phase transitions inevitably
lead to superpositions of the eigenstates of the post-
transition Hamiltonian. Such superpositions (in, e.g., an
atom) result in oscillations with the frequency given by the
difference between the energies of the two levels involved,
and the amplitude set by their initial occupancy. We show
that superpositions of the post-transition eigenstates are
inevitable in quantum phase transitions and exhibit ana-
logous (many-body) coherent quantum oscillations. We
characterize their appearance and properties in models
where they can be investigated analytically or numerically,
and where they should be accessible to experiments.
The obvious motivation for investigating collective

oscillations of many-body systems is because they are
there, and because they are a signature of the quantumness
of the transition. Moreover, such an oscillatory behavior
constitutes a sensitive probe of the imperfections of the
experiment, including especially decoherence. We show
that the form of the oscillations is simple when the energy
levels of the many-body system are degenerate (as then the
number of frequencies involved is small). When the
degeneracies are lifted by the imperfections of the
Hamiltonian (e.g., caused by its implementation), dephas-
ing will result in the loss of coherence. Furthermore,
decoherence caused by imperfect isolation of the system
will result in nonunitary evolution causing a further gradual

loss of coherence. Therefore, such oscillations can serve as
a diagnostic tool to assess how accurate—and especially
how quantum—is the implementation of the transition in
the emulation experiments: There are now examples of
quantum phase transitions that are both solvable and
experimentally accessible, creating appealing possibilities
to use the exact many-body time-dependent solutions to
benchmark experimental implementations. The post-
transition oscillations should be relatively easy to prepare
and detect in contrast to the more challenging nonlocal
“double slit-like” superpositions of topological defects [1].
Kibble-Zurek mechanism.—The Kibble-Zurek mecha-

nism (KZM) has its roots in cosmological symmetry-
breaking phase transitions [2]. Kibble considered cooling
Universe where causally disconnected regions independ-
ently select broken symmetry vacua. This mosaic of broken
symmetry domains leads to topologically nontrivial con-
figurations. The extent of such domains is limited by the
size of the causal horizon.
This cosmological constraint is not relevant for labo-

ratory experiments. Therefore, a dynamical theory for the
continuous phase transitions was proposed and developed
[3,4]. KZM employs equilibrium critical exponents to
predict the scaling of the defects density as a function of
the quench rate. It has been verified in numerous simu-
lations [5–16] and condensed matter experiments [17–41].
Topological defects are central in those studies, as they can
persist despite dissipation inevitable in thermodynamic
systems.
The quantum version of KZM (QKZM) considers

quenches across quantum critical points. It has been deve-
loped [42–78] and put to experimental tests [79–89].
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Recent experiments target the exactly solvable quantum
Ising chain in the transverse field, employing simulators
based on Rydberg atoms [87] and superconducting qubits
[90]. Scaling of the resulting defect densities appears to be
consistent with the QKZM predictions [43–45]. Ongoing
experimental developments [91–94] open the possibility to
study the quantum dynamics in two-dimensional systems.
Of course, by the time defects are counted, quantum

superpositions that should be present in the post-transition
state are long gone. Thus, the quantumness of phase
transition dynamics has not been, as yet, certified in the
experiments. Indeed—as approximate scalings observed
are not a unique fingerprint of the defect formation
mechanism, and it is not clear at what stage the systems
used in the experiments decohere and become effectively
classical—it would be desirable to directly verify quantum-
ness of the phase transition dynamics. Coherent oscillations
we are describing offer that possibility. They can also be
used to benchmark quantumness of the hardware used in
(e.g., adiabatic) quantum computing.
A smooth ramp crossing the critical point at time tc can

be linearized in its vicinity as

ϵðtÞ ¼ t − tc
τQ

; ð1Þ

where ϵ measures the distance from the quantum critical
point and quench rate is given by τQ. The system is
prepared in the ground state far from the critical point.
The initial evolution adiabatically follows the time-
dependent Hamiltonian. This approximate adiabaticity fails
at time −t̂ before tc when the reaction rate of the system
(set by the gap) becomes comparable to the instantaneous
relative ramp rate, namely, Δ ∝ jϵjzν ∝ j_ϵ=ϵj ¼ 1=jtj. This
leads to the characteristic timescale

t̂ ∝ τzν=ð1þzνÞ
Q ; ð2Þ

where z is dynamical critical exponent, and ν is correlation
length exponent [3]. In the adiabatic-impulse-adiabatic

scenario, the ground state at −ϵ̂ ¼ −t̂=τQ ∝ −τ−1=ð1þzνÞ
Q

fluctuating on a scale set at −t̂ survives until þt̂, and the
correlation length,

ξ̂ ∝ τν=ð1þzνÞ
Q ; ð3Þ

becomes imprinted for the subsequent adiabatic evolution.
This oversimplified scenario correctly predicts the scaling
dependence of the characteristic length and timescales on
τQ. They naturally appear in KZM dynamical scaling
hypothesis [95–97]. For an observable O,

ξ̂ΔOhψðtÞjOrjψðtÞi ¼ FOððt − tcÞ=ξ̂z; r=ξ̂Þ; ð4Þ

where jψðtÞi is the state of the system, ΔO is the scaling
dimension, FO is a nonuniversal scaling function, and r is a
distance in, e.g., a correlation function. It is expected to
hold in the vicinity of the critical point, for t between �t̂.
In the following, we employ the paradigmatic Ising

Hamiltonian in a transverse field,

HðtÞ ¼ −JðtÞ
X
hm;ni

σzmσ
z
n − gðtÞ

X
m

σxm: ð5Þ

Here, σxm, σ
y
m, and σzm denote the Pauli matrices on lattice

site m, and interactions that are between neighboring sites,
hm; ni. We consider three lattice geometries: (i) an inte-
grable one-dimensional (1D) chain where each site has two
neighbors, and two nonintegrable models where each site
has four neighbors: (ii) a 1D ladder where sites that are
next-nearest neighbors in a chain become adjacent, and
(iii) a two-dimensional square lattice geometry (2D). We
pictorially represent those lattice geometries as insets in the
figures.
Oscillations in one dimension.—We begin with the 1D

version [43,45,51,97,98] where we traditionally set J ¼ 1
and ramp the transverse field,

gðtÞ ¼ gc½1 − ϵðtÞ� ¼ gc − gcðt − tcÞ=τQ; ð6Þ

from t ¼ −∞ in the limit of strong field, across the critical
point at gðtcÞ ¼ gc ¼ 1, to gðtsÞ ¼ 0 where the transverse
field vanishes. The Jordan-Wigner transformation maps the
model to a set of independent two-level Landau-Zener
systems that can be solved analytically. In particular, the
final density of excited quasiparticles or kinks scales like
[43,45,99]

n ≈
1

2π
ffiffiffiffiffiffiffiffi
2τQ

p ∝ ξ̂−1; ð7Þ

consistent with the critical exponents z ¼ ν ¼ 1. The
average defect density (accessed by counting them in the
experiments to date) is a very superficial characterization of
the final state, which, in fact, should be—prior to the kink
count—a quantum superposition of different numbers
[51,66] and correlated locations of kinks [77,98].
Breaking with tradition, we do not focus on kinks but

rather on the transverse magnetization, σx, that does not
commute with the kink observables. Its expectation value
during and after crossing the critical point is shown in
Fig. 1, where we consider linear ramps (6) with several
values of the quench time. All the ramps stop at g ¼ 0,
allowing the system to freely evolve with a purely ferro-
magnetic Hamiltonian for t > ts. In accordance with the
general QKZM scaling hypothesis (4), for slow enough τQ
the transverse magnetization in the vicinity of the critical
point should satisfy
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ξ̂Δx ½hσxðtÞi − hσxiGS� ¼ Fσx ½ðt − tcÞ=t̂�: ð8Þ

Here hσxiGS is transverse magnetization in the instanta-
neous ground state for transverse field gðtÞ, and the scaling
dimension Δx ¼ 1 for a 1D chain. As we can see in
Fig. 1(c), the KZM-rescaled plots for different quench
timescales τQ collapse to a common scaling function. In
this integrable case good collapse extends beyond þt̂. The
function is oscillatory with an instantaneous frequency
dominated by twice the quasiparticle gap as two quasi-
particles with opposite quasimomenta are the relevant
excitation. The amplitude of the oscillations slowly decays
with the scaled time, partly due to a dephasing by a

nontrivial quasiparticle dispersion and partly due to the
adiabatic evolution of the excited Bogoliubov modes.
The ramps in Fig. 1(a) terminate at g ¼ 0 where the

transverse magnetization in the ground state is zero:
hσxiGS ¼ 0. Therefore, Fð∞Þξ̂−1 ∝ τ−1=2Q is the initial
transverse magnetization for the subsequent free evolution
with g ¼ 0, where

hσxmðτÞi ¼ heiτHσxme−iτHits ¼ A0 þ A4 cosð4τ þ ϕ̃Þ; ð9Þ

as each site is uniformly coupled to 2 neighbors. Here, we
introduce

τ ¼ t − ts > 0;

as the duration of free evolution with g ¼ 0. As we can see
there is a constant term plus oscillations with a single
frequency. The amplitudes are determined from expectation
values in the state at t ¼ ts at the end of the linear ramp and
the beginning of the free evolution [99].
From the exact solution [99], we can extract an asymp-

totic form for τQ ≫ 1:

hσxmðτÞi ¼ 2nþ 2Cdn2 cosð4τ þ ϕÞ − π2n2 sinð4τÞ: ð10Þ

Here, A0 ¼ 2n is set by the density of kinks in Eq. (7),
which is conserved for t > ts. The amplitude

Alinear
4 ¼ n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4 þ 4π2Cd sinϕþ 4C2d2

q
; ð11Þ

where C ≈ 57
ffiffiffiffiffiffi
6π

p
=80 is a numerical constant, ϕ is a phase

accumulated by the KZ-excited quasiparticles [99], and

d ¼ ½1þ ð3 ln τQ=4πÞ2�−3=4 < 1 ð12Þ

is a factor due to dephasing of the KZ excitations by their
nontrivial dispersion. The constant term and the amplitude
are plotted in Fig. 2(a) as functions of the quench time τQ.
As we can see, the amplitude is not a simple power law in

τQ. Irregularities originate from interference between the
two oscillatory contributions to (10), from the KZ excita-
tion near the critical point, ∝ cosð4τ þ ϕÞ, and from the
abrupt termination of the linear ramp at g ¼ 0, ∝ sinð4τÞ.
To focus on KZ oscillations we eliminate the non-KZ
oscillations [104] by using, instead of the all-linear ramp in
Eq. (6), a smoother version,

ϵ̃ðtÞ ¼ t − tc
τQ

−
4

27

�
t − tc
τQ

�
3

; ð13Þ

replacing ϵðtÞ in Eq. (6). This protocol starts in the ground
state at gðtc − 3

2
τQÞ ¼ 2, and terminates at gðtsÞ ¼ 0, for

ts ¼ tc þ 3
2
τQ, with a zero time derivative, _gðtsÞ ¼ 0. This

leads to pure post-KZ oscillation amplitude,

FIG. 1. Coherent oscillations after a quench through a quantum
critical point. In panel (a), we show a quench protocol in the 1D
transverse-field Ising model, where we allow the system to freely
evolve upon reaching zero transverse field at time t ¼ ts. In (b),
we track transverse magnetization in the 1D model, where the
coherent oscillations for t > ts are apparent. Their origin can be
traced back to the point reached at tc, see panel (c), where we
show data collapse consistent with the dynamical scaling hy-
pothesis in Eq. (8). There is a gradual decrease of oscillation
amplitude during the ramp through the ferromagnetic phase,
setting the nonzero amplitude observed for t > ts [note that panel
(c) shows only t < ts].
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Asmooth
4 ¼ 2Cdn2; ð14Þ

that scales simply as n2 ∝ τ−1Q , with a logarithmic correc-
tion brought in by the dephasing factor (see Fig. 2). The
latter is slightly reduced, replacing ln τQ with 0.2164þ
ln τQ in Eq. (12), as the approach to g ¼ 0 makes the
smooth ramp longer. However, the reduction is negligible
when 0.2164 ≪ ln τQ, because the extra time needed for
the smooth ending of the ramp is spent mostly near g ¼ 0,
where the quasiparticle dispersion is almost flat, and there
is little extra dephasing.
The smooth ramp is not the only way to eliminate non-

KZ oscillations. For instance, an imperfect termination of

the linear ramp at a finite gf ≪ 1 (instead of 0) results in a
gradual suppression of the oscillations with time. The
small finite transverse field means that the quasiparticle
dispersion is nontrivial although almost flat. The non-KZM
excitations that span all quasi-momenta, dephase after
time ∝ 1=gf. On the other hand, the influence on the
KZ-part appears in the dephasing factor, replacing ln τQ
with ln τQ − g2f þ 2τgf=τQ in Eq. (12). The KZ-part that
originates from small quasimomenta modes, becomes
suppressed when τ ≫ τQ=gf. For large enough τQ, it be-
comes much larger than the dephasing time of the non-KZ
part, thus opening a time window when the non-KZ
oscillations are suppressed but the KZ ones are not. It
highlights the stability of KZ-related oscillations.
Oscillations in nonintegrable systems.—Qualitatively

similar results can be obtained for nonintegrable systems
though they make us resort to numerical simulations, see
Fig. 3. For a 1D ladder, we use uniform matrix product

FIG. 2. Scaling of transverse magnetization oscillations ampli-
tudes. In (a), for a 1D chain, we show constant contribution, A0

(blue line), and the amplitudes of coherent oscillations, A4, as a
function of τQ. We compare the analytical formulas in Eqs. (10)
and (14) (lines) with the corresponding exact numerical results
(points). We show the results for two quench protocols of the
same linear slope ∝ τ−1Q at the critical point: the first protocol in
Eq. (6) stops abruptly at g ¼ 0 (green line indicates the amplitude
of oscillations), and the second one in Eq. (13) reaches g ¼ 0
smoothly (red). The protocols are shown in the inset. In (b), for
the ladder, the constant term B0 closely follows the measured
density of excitations, n. The latter follows an expected scaling
for a model in the same universality class as a 1D chain,
n ∼ τ−1=2Q . The dominant oscillatory contribution, B8, can be
fitted with B8 ∼ τ−0.69Q , though we expect that logarithmic
corrections from dephasing contribute to the decay of B8. Note
that in (a) the red line would be consistent with a power law and
exponent −1.18 while the analytical solution shows n2 ∼ τ−1Q
behavior times a logarithmic correction. In (c), we show the data
for the 2D square lattice where the dominant contributions, B0

and B8, closely follow the measured excitation density for
available times.

FIG. 3. Oscillations in nonintegrable systems. In (a), we show
scaled transverse magnetization (8) in the function of scaled time
in the 1D ladder geometry. The critical point of the model is in the
same universality class as a 1D chain, with ν ¼ z ¼ Δx ¼ 1. For
large enough τQ, the plots collapse in the vicinity of the critical
point to a single scaling function Fσx that exhibits oscillatory
behavior. In (b), the corresponding data for the 2D transverse
Ising model with the scaling dimension Δx ≃ 1.41. The values of
τQ are limited, from below, to be in the scaling limit at the critical
point and, from above, to avoid finite-size effects in a finite lattice
[78]. The best collapse of complementary quantities used ξ ¼
τ0.36Q [78] for similar range of τQ ’s. Solid lines indicate thermo-
dynamic limit results of iPEPS [107], which become unstable for
times longer than shown. Dashed lines indicate the MPS results
measured in the center of a finite 11 × 11 lattice.
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states (uMPS) [105] for a system in thermodynamic limit,
and in 2D either the MPS [106] on a 11 × 11 lattice or the
iPEPS in the thermodynamic limit [107]. We employ a
protocol that is gradually turning on the Ising terms while
turning off the transverse field [108],

gðtÞ=gc ¼ ½1 − ϵðtÞ�=2; JðtÞ ¼ ½1þ ϵðtÞ�=2: ð15Þ

We use the linear ramp in Eq. (1) for the ladder and a
smooth ramp in Eq. (13) for the square lattice. The models
exhibit phase transitions (for J ¼ 1) at gc ≈ 3.04438 in two
dimensions [109] and we identify gc ≈ 2.4785 for the ferro-
magnetic ladder.
After the ramp ends, at g ¼ 0, the oscillations

continue as

hσxmðτÞi ¼B0þB4 cosð4τþϕ4ÞþB8 cosð8τþϕ8Þ; ð16Þ

with a constant term and two frequencies of oscillations,
resulting from an uniform Ising coupling of a site to 4
neighboring sites [99]. The amplitudes are shown in Fig. 2.
Figure 3 is testing the scaling hypothesis (8) for the

nonintegrable models. With increasing τQ the plots tend to
an oscillatory scaling function in the vicinity of the critical
point even though in two dimensions, due to the growth
of entanglement with increasing τQ, our simulations are
limited to relatively fast transitions (i.e., quench times
where the integrable 1D Ising also exhibits discrepancies
with the limiting slow quench behavior).
Conclusion.—The postquench state is a superposition of

different numbers of kinks (excited bonds). Two manifolds
of eigenstates that differ by m excited bonds (m ¼ 2 for a
chain, and m ¼ 4 for a ladder) result in oscillations

j…↓↓↓↓↓…i þAj…↓↓↑↓↓…ie−2mit: ð17Þ

This is the most obvious quantum signature of the
consequences of the quantum phase transition.
For a chain the probability of a single-spin flip is jAj2 ∝

n4 (with a logarithmic correction) in agreement with
[98,110] where antibunching of kinks makes it decay faster
than n2. For a ladder we fit jAj2 ∝ τ−1.1Q . In both cases the
amplitude of the oscillations follows as a square root of the
probability. In two dimensions, the higher oscillation
frequency, 8, similarly comes from isolated spin flips
similar to (17), while the lower frequency, 4, and the
constant term are due to spin flips adjacent to (coarse)
domain walls. In 1D cases the dominant energy eigenvalues
have nearly the same separation (a multiple of the gap) so
the oscillation occurs with an essentially single (time
dependent) frequency. In the 2D case the picture becomes
slightly more complicated, but the few frequencies are still
controlled by the gap size.
The secular part of the response to the quench follows

from the same treatment and is also quantum, but the

oscillatory part is a more compelling signature of the
quantumness of the transition. Coherent oscillations
are vulnerable to decoherence (see Ref. [1] for related
discussion) and to imperfect implementation of the
Hamiltonian. Decoherence that einselects broken sym-
metry states is plausible in many-body systems. It will
localize kinks while suppressing oscillations, as do the
measurements aimed at testing KZM performed to date.
Pointer observable is einselected at least in part by the
system-environment coupling [111], so, e.g., “quantum
limit of decoherence” that favors energy eigenstates [112],
is also possible.
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