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The modular commutator is a recently discovered entanglement quantity that quantifies the chirality of
the underlying many-body quantum state. In this Letter, we derive a universal expression for the modular
commutator in conformal field theories in 1þ 1 dimensions and discuss its salient features. We show that
the modular commutator depends only on the chiral central charge and the conformal cross ratio. We test
this formula for a gapped (2þ 1)-dimensional system with a chiral edge, i.e., the quantum Hall state, and
observe excellent agreement with numerical simulations. Furthermore, we propose a geometric dual for the
modular commutator in certain preferred states of the AdS/CFT correspondence. For these states, we argue
that the modular commutator can be obtained from a set of crossing angles between intersecting Ryu-
Takayanagi surfaces.
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One of the overarching themes of research in theoretical
physics over the past few decades has been the study of
entanglement in interacting quantum many-body systems.
Calculation of the canonical measure of entanglement—
entanglement entropy—has played a crucial role in eluci-
dating the physics of topological order [1,2], conformal
field theory [3], and holographic duality [4].
Recently, a new entanglement quantity known as

the modular commutator [5,6] was introduced [7]. The
modular commutator is defined as JðA; B;CÞρ ≔
iTrðρABC½ln ρAB; ln ρBC�Þ for a generic tripartite quantum
state ρABC [8], and, unlike other known entanglement
measures, it is odd under time reversal. In the context of
topologically ordered systems in 2þ 1D, the modular
commutator was used to extract the chiral central charge
of the edge theory [5,6].
In this Letter, we derive a universal expression for the

modular commutator in conformal field theories in 1þ 1D
and discuss its physical implications. Let A, B, and C be
three contiguous spacetime intervals; see Fig. 1(a). In this
setup, we derive a general expression for JðA;B;CÞ in the
vacuum. If the subsystems lie in a single time slice, the
expression simplifies to

JðA;B;CÞjΩi ¼
πc−
6

ð2η − 1Þ; ð1Þ

where η ¼ ½ðx2 − x1Þðx4 − x3Þ=ðx3 − x1Þðx4 − x2Þ� is the
cross ratio, c− ¼ cL − cR is the chiral central charge of the
CFT, and jΩi is the vacuum state. Using a standard
conformal mapping from the complex plane to the cylinder,
expressions for the modular commutator for finite systems

in the vacuum and infinite systems at finite temperature are
also derived.
We primarily discuss two applications. First, we argue

that Eq. (1) can be a useful tool to study the entanglement
structure of 2þ 1D chiral gapped systems at their edges.
Specifically, consider three contiguous intervals A, B,
and C at the edge of a disk; see Fig. 3(a). We propose
the following formula—based on an argument utilizing
Eq. (1)—for the modular commutator:

JðA; B;CÞjψ2Di ¼
πc−
3

η; ð2Þ

where c− is the chiral central charge of the 2þ 1D system
(defined as a coefficient appearing in the edge energy
current [9–11]) and jψ2Di is the ground state. We test
Eq. (2) numerically for the Chern insulator and pþ ip
topological superconductor, demonstrating excellent
agreement.
When A, B, and C cover the entire edge [see Fig. 3(b)],

i.e., η ¼ 1, we provide an independent information-
theoretic argument for a stronger result:

(a) (b)

FIG. 1. (a) Three contiguous intervals A, B, and C, on a
single time slice. (b) Contiguous intervals on a circle S1 with
circumference L.
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JðA;B;CÞjψ̃2Di ¼
π

3
c−; ð3Þ

where jψ̃2Di is any state which is indistinguishable from
jψ2Di in the bulk region. We emphasize the generality of
Eq. (3) in two directions. First, this equation holds even if
there is an excitation localized at the edge. Second, the
argument continues to hold even if the shape of the edge is
deformed continuously. The underlying argument—based
on the properties of modular commutator [5,6] and tech-
niques from the entanglement bootstrap [12]—reveals that
the robustness of this result originates from the entangle-
ment area law of the bulk.
Second, we propose a holographic interpretation of

Eq. (1). Our interpretation rests on an observation that
Eq. (1) can be recast as

JðA;B;CÞjΩi ¼
πc−
6

cos θ; ð4Þ

where θ is the crossing angle of the two geodesics (i.e., two
Ryu-Takayanagi surfaces [4]) in AdS3, each anchored at
the boundaries of AB and BC, respectively. We verify this
correspondence at both zero and finite temperature and
propose a generalization to any state whose bulk geometry
has a “moment of time symmetry” [13,14].
Our approach to derive Eq. (1) will be geometric in

nature. The main advantage of this derivation is that it
makes the generalization of Eq. (1) to arbitrary spacetime
intervals straightforward. Alternative derivations shall be
discussed in Supplemental Material [16] as well.
Geometric derivation.—Our derivation of Eq. (1) is

based on the following two observations. First, the modular
commutator JðA; B;CÞ can be viewed as the linear
response of the BC entanglement entropy under the AB
modular flow [6,44,45]. Second, for a 1þ 1D CFT, the
modular flow for a finite interval generates a special
conformal transformation that keeps the two ends of the
interval fixed [46–48]. Thus, we will compute the modular
commutator JðA;B;CÞ by the change of the entropy SBC
from the infinitesimal conformal transformation generated
by the modular flow corresponding to AB.
Themodular flow of an operatorOwith respect to a state

ρ and a subsystem A is defined as OðsÞ ≔ ρisAOρ−isA for
s ∈ R, where ρisA ≔ eis log ρA is the unitary operator gen-
erated by the modular Hamiltonian. We consider the action
of the modular flow associated with the interval AB in the
vacuum. Define the following one-parameter family of
density matrices: ρABCðsÞ ≔ ρisABρABCρ

−is
AB . The response of

the von Neumann entropy of ρBCðsÞ ¼ TrA½ρABCðsÞ� under
this flow is related to the modular commutator by [6]

dS½ρBCðsÞ�
ds

����
s¼0

¼ −JðA; B;CÞρ; ð5Þ

with SðρÞ ≔ −Tr½ρ ln ρ�.

In quantum field theory, the observables restricted to the
interval AB completely determine the observables in the
full causal diamondDðABÞ, i.e., the domain of dependence
of AB. In 1þ 1D CFT, the modular flow associated to a
spacelike interval in the vacuum is a local transformation of
observables lying within its causal diamond [46]. The
relevant vector fields are illustrated in Fig. 2.
Now we can use the following regulated form of the

single-interval entanglement entropy for chiral CFTs in
1þ 1D [49,50]:

SBC ¼ cL
12

ln
ðv4 − v2Þ2
ϵv2ϵv4

þ cR
12

ln
ðu4 − u2Þ2
ϵu2ϵu4

; ð6Þ

where u ¼ t − x and v ¼ tþ x are light-cone coordinates,
u2 ¼ t2 − x2, v2 ¼ t2 þ x2, u4 ¼ t4 − x4, v4 ¼ t4 þ x4, and
ϵu2, ϵu4, ϵv2, and ϵv4 denote the UV cutoffs in the u and v
directions at the end points x2 and x4. Details of the cutoff
prescription are discussed in Supplemental Material [16].
Note that the point x4 is unaffected by the modular flow

with respect to AB, because it is outside DðABÞ. Thus, u4,
v4 and ϵu4; ϵv4 remain unchanged; the change occurs only
at x2. Importantly, the cutoffs ϵuðvÞ2ð4Þ transform non-
trivially under local diffeomorphisms. They are rescaled
by the local boost angle (see Fig. 2):

d ln ϵv2 ¼ −d ln ϵu2 ¼ dχ; ð7Þ

where dχ ¼ ½2πðx23 − x12Þ=x13�ds is the boost angle at x2.
Here, we use the convention xij ¼ xj − xi. Differentiating
Eq. (6) and using Eq. (7), we obtain

JðA;B;CÞjΩi ¼
πc−
6

ð2η − 1Þ; ð8Þ

where the chiral central charge is c− ¼ cL − cR and the
cross ratio is η ¼ ðx12x34=x13x24Þ. Generalization of Eq. (8)
to general Cauchy surfaces is straightforward and can be
used to determine cL and cR individually in terms of the
modular commutator; see Supplemental Material [16] for
details.
Equation (8) for JðA; B;CÞjΩi possesses a set of impor-

tant properties, summarized below. First, J is odd under

FIG. 2. Modular flow in the interior of the causal diamond
DðABÞ and the associated vector field. Under an infinitesimal
flow by a parameter ds, interval AB becomes A0B0 and a boost
angle dχ develops at the left end of B0.
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time reversal, which exchanges cL and cR. This is in
contrast with other entanglement measures such as the
entanglement entropy, which are even under time reversal.
Second, J is odd under the map η → 1 − η. In particular,
J ¼ 0 at η ¼ 1=2, where the modular commutator changes
sign. Third, as the length of one interval gets small, J does
not vanish but takes on universal values. As x1 → x2 or
x3 → x4, η → 0 and J → −πc−=6, and similarly, as
x2 → x3, η → 1 and J → πc−=6. In fact, we shall later
see that the universal difference Jðη ¼ 1Þ − Jðη ¼ 0Þ ¼
πc−=3 is exactly the modular commutator for 2D chiral
topological order. Last, if c− ≠ 0, we have J ¼ πc−=6 ≠ 0
when ABC is the entire circle. This distinguishes jΩi from
any pure state on a Hilbert space factorized into a tensor
product on spatial regions, as the latter necessarily has
J ¼ 0. Thus, c− ≠ 0 is incompatible with any lattice regu-
larization (see also [51] for an alternative argument) [52].
More generally, one can consider a thermal state at

inverse temperature β on a circle of circumference L,
denoted as ρðβ;LÞ. Through standard conformal mappings
from planes to cylinders [53], one can show that the
modular commutator JðA; B;CÞ remains to be in the form
in Eq. (1) in two limits β=L → 0;∞, with the cross ratio η

replaced by ηðβ;LÞeff :

ηðβ;LÞeff ¼
8<
:

sinðπx12=LÞ sinðπx34=LÞ
sinðπx13=LÞ sinðπx24=LÞ ; β=L → ∞;

sinhðπx12=βÞ sinhðπx34=βÞ
sinhðπx13=βÞ sinhðπx24=βÞ ; L=β → ∞:

ð9Þ

Chiral thermal state.—The modular commutator can be
nonzero even for nonchiral CFTs, provided that the temper-
atures for the left- and the right-moving modes are unequal.
We refer to such states as chiral thermal states [54–56]:

ρðβL;βR;LÞ ¼ 1

Z
e−βLHL−βRHR: ð10Þ

Here, HL and HR are the Hamiltonians of the left- and
right-moving sectors, respectively. Similarly, ðβL; βRÞ re-
present inverse temperatures for the respective modes.
There are a few reasons to study chiral thermal states.

First, a chiral thermal state can be obtained by applying the
Lorentzian boost to a thermal state. Second, there are
concrete lattice models whose underlying state at low
temperature can be well described by a chiral thermal
state. For instance, it was noted that the reduced density
matrix near the edge of a chiral topological order in 2þ 1D
can be represented by a chiral thermal state with ðβL; βRÞ ¼
ð∞; finiteÞ [55]. Third, as we show in Supplemental
Material [16], one can sometimes explicitly construct chiral
thermal states in lattice models, making the numerical
verification tractable.
From Eq. (9), for a general chiral thermal state ρðβL;βR;LÞ

we have

JðA;B;CÞρðβL;βR ;LÞ ¼
π

3
cðηðβL;LÞeff − ηðβR;LÞeff Þ; ð11Þ

where c ¼ cR ¼ cL. We construct chiral thermal states for
the free fermion CFT on the lattice and compute the
modular commutators for various choices of parameters.
The numerical result agrees excellently with Eq. (11) (see
Supplemental Material [16] for details).
Edge of 2þ 1D chiral topological order.—The chiral

thermal state can provide insights into the edges of 2þ 1D
gapped systems with nonzero chiral central charge, denoted
as c− [9–11,55]. (We choose a different font to distinguish
two concepts: the chiral central charge c− of a 2þ 1D
gapped phase versus c− for a 1þ 1D chiral CFT.)
Consider a ground state jψ2Di on a disk for concreteness;

see Fig. 3. For an annulus which covers the entire edge,
e.g., the annulus in Fig. 3(a), the reduced density matrix of
jψ2Di can be viewed as a 1þ 1D system. If the edge is
completely chiral (that is when, e.g., it has only left-moving
modes but not right-moving modes), it is expected to be
described by a chiral thermal state whose c equals c− [55].
Then, by applying Eq. (11) to the interval choice in

Fig. 3(a) and taking βL ¼ ∞, βR ≪ LA; LB; LC (the lengths
of the regions), we arrive at a prediction:

JðA; B;CÞjψ2Di ¼
π

3
c−η: ð12Þ

We have tested this formula numerically for a Chern
insulator and observed excellent agreement; see Fig. 4.
We propose this formula to hold for general translation
invariant topologically ordered systems in 2þ 1D.
Topological argument.—When the union of intervals A,

B, and C is the entire annulus, as shown in Fig. 3(b),
Eq. (12) becomes J ¼ ðπ=3Þc−. Here, we present an
entirely different argument for this formula, based on the
entanglement area law of the 2þ 1D bulk [1,2]. Our
argument reveals an extra degree of robustness of this
expression:

JðA; B;CÞjψ̃2Di ¼
π

3
c− for Fig:3ðbÞ: ð13Þ

We show that Eq. (13) holds for any state jψ̃2Di locally
indistinguishable from the ground state within the bulk.

(a) (b) (c)

FIG. 3. A 2þ 1D gapped chiral system on a disk and various
choices of subsystems. The sizes (width) for subsystems within
the bulk (adjacent to the edge) are large compared to the bulk
correlation length.

PHYSICAL REVIEW LETTERS 129, 260402 (2022)

260402-3



Note that we need not assume jψ̃2Di to be the ground state;
our argument applies even if there are edge excitations, as
long as the global state is pure.
The key observation that leads to Eq. (13) is an

equivalence we will establish between the edge and the
bulk modular commutator for the set of subsystems shown
in Fig. 3(b):

JðA;B;CÞjψ̃2Di ¼ −JðX; Y; ZÞjψ̃2Di: ð14Þ

Note that the regions A, B, and C lie at the edge, while the
regions X, Y, and Z lie entirely in the bulk. Once this
relation is established, one can use the formula for the bulk
modular commutator [5], i.e., JðX; Y; ZÞjψ̃2Di ¼ −ðπ=3Þc−,
to complete the derivation.
The equivalence of the two modular commutators

directly follows from Sec. VI in Ref. [6], as we explain
below. (See Supplemental Material [16] for a more detailed
explanation.) First of all, the state jψ̃2Di, being indistin-
guishable from the ground state in the bulk, satisfies the
axioms of entanglement bootstrap [12]. Of particular
importance to us is Axiom A1 in Ref. [12], which holds
for local disklike regions away from the edge; it says
ðSBC þ SCD − SB − SDÞjψ2Di ¼ 0 for the green disk BCD
shown in Fig. 3(b), where jψ2Di is the ground state. This
axiom, applied to the bulk disk XYZW in Fig. 3(c), gives
IðA0∶ YjXÞ ¼ IðC0∶YjZÞ ¼ 0, where IðX∶ZjYÞ≡ SXY þ
SYZ − SXYZ − SY is the conditional mutual information.
It then follows that, for state jψ̃2Di,

JðX; Y; ZÞ ¼ JðA0X; Y; C0ZÞ ¼ −JðA0X;WB0; C0ZÞ:

Letting A ¼ A0X, B ¼ B0W, and C ¼ C0Z, we con-
clude Eq. (14).

Let us emphasize the generality of the argument above.
Note that nowhere in the derivation did we use any
symmetry (e.g., translation or rotation symmetry), nor
did we use any condition of the state in the vicinity of
the edge. For instance, even in the presence of strong
disorder, even though the conformal symmetry does not
hold—not even approximately—formula (13) still holds;
this is numerically verified for integer quantum Hall
states—see Supplemental Material [16]. Moreover, the
argument holds as long as jψ̃2Di ¼ Uedgejψ2Di, where
Uedge is any unitary operator along the edge which is thin
compared to the width of the subsystems; specifically,
Uedge should be supported within the annulus A0B0C0 for the
choice of ABC in Fig. 3(c). (Under a plausible assumption,
the unitarity assumption can be dropped. See Supplemental
Material [16] for the details.)
Holographic interpretation.—In the AdS/CFT corre-

spondence [57], entanglement quantities of the boundary
CFT are mapped to geometric quantities in the bulk of an
asymptotic AdS space. For example, the Ryu-Takayanagi
(RT) formula [4] implies that, in ordinary nonchiral AdS/
CFT, the entanglement entropy of a boundary region A in a
time-symmetric state is given by the minimal length of the
bulk geodesic γA (also known as the RT surface) homolo-
gous to the region. Some examples are shown in Fig. 5.
Here, we propose to extend the holographic dictionary to

the modular commutator for chiral realizations of AdS/
CFT, e.g., Ref. [15]. In states whose bulk geometries are
locally AdS3 [58] with a moment of time symmetry, we
propose

JðA;B;CÞ ¼ πc−
6

X
i

cos θi; ð15Þ

where fθig is the set of crossing angles of the RT surfaces,
i.e., geodesics γAB and γBC. Each θi is chosen such that γAB,
seen inwardly, lies at the right side of the angle; see Fig. 5
for examples. In general, AB and BC may have multiple
connected components; see Supplemental Material [16] for
the relevant discussion.
We can verify the conjecture for a few simple cases

shown in Fig. 5. The vacuum state of chiral AdS3=CFT2 is
described by the ordinary vacuumAdS3 spacetime [15]. On
the t ¼ 0 slice of this spacetime, we can apply a bulk
isometry to place the intersection point of any two

FIG. 4. JðA; B; CÞ versus η for the Chern insulator, which is
realized by filling the lowest band of the Hofstadter model with
flux π=2. We use a square lattice on a cylinder with circumference
L ¼ 144 and height W ¼ 32. A, B, and C are rectangular strips
on the boundary with length LA, LB, and LC, respectively, and
width w. Left: We fix w ¼ 10 and vary the lengths LA, LB,
and LC. Blue dots represent numerical data, and the orange
line represents the analytical prediction Eq. (12). Right:
We choose several ðLA; LB; LCÞ and vary w. The three
choices ðLA; LB; LCÞ ¼ ð48; 48; 48Þ; ð36; 36; 36Þ; ð24; 48; 24Þ
correspond to η ¼ 1; 1=2; 1=4, respectively.

(a) (b)

FIG. 5. Verified cases of the holographic conjecture: (a) At zero
temperature. Each disk is a Poincaré disk, and the two are related
by an isometry. (b) At a finite (high) temperature such that β ≪ L.
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geodesics at the center of the Poincaré disk. Then, the two
geodesics become straight lines with a crossing angle θ.
Since the cross ratio η—given by η ¼ ðx12x34Þ=ðx13x24Þ—
is preserved under this isometry, the identity 2η − 1 ¼ cos θ
follows from simple trigonometry. Thus, we arrive at

JðA;B;CÞjΩi ¼
πc−
6

cos θ: ð16Þ

At high temperatures β ≪ L, thermal states in CFTare dual
to Banados-Teitelboim-Zanelli (BTZ) black holes [60] in
the bulk; see Fig. 5(b). An analogous derivation applies,
because the BTZ black hole can be viewed as a quotient of
global AdS3. The result confirms our conjecture. (See
Supplemental Material [16] for details.)
In the semiclassical limit of AdS/CFT, a boundary

modular HamiltonianK is dual to a bulk geometric operator
which, in nonchiral AdS/CFT, is proportional to the area of
the RT surface [61,62]. In chiral AdS/CFT, the operator has
additional terms [59]; we will call the full operator F. The
modular commutator of contiguous intervals can be written
in terms of commutators of F operators. This commutator is
zero in the vacuum for a single time slice if the chiral
central charge is zero [63], which matches Eq. (1).
However, for chiral theories, Eq. (15) implies the uncer-
tainty relation

ΔFðABÞ · ΔFðBCÞ ≥ πc−
12

j cos θj: ð17Þ

Thus, the uncertainty in the geometric operator F grows
parametrically with the chiral central charge.
Discussion.—In this Letter, we computed the modular

commutator [5,6] in 1þ 1D CFTs, arriving at a simple
formula Eq. (1) and discussing its applications in con-
densed matter systems and holography. For future work, it
will be interesting to verify our conjecture in AdS/CFT to
more general setups, e.g., disconnected intervals, states
whose bulk geometries have no moment of time symmetry,
and states with bulk quantum matter. Another interesting
open problem is how our conjecture generalizes to higher
dimensions. On the condensed matter side, it would be
interesting to understand how Eqs. (12) and (13) generalize
when the sector of the chiral edge is modified by an anyon
in the bulk.
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Note added.—Recently, we noticed a related work [64],
which has some overlap with this Letter.
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