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Active nematics can be modeled using phenomenological continuum theories that account for the
dynamics of the nematic director and fluid velocity through partial differential equations (PDEs). While
these models provide a statistical description of the experiments, the relevant terms in the PDEs and their
parameters are usually identified indirectly. We adapt a recently developed method to automatically identify
optimal continuum models for active nematics directly from spatiotemporal data, via sparse regression of
the coarse-grained fields onto generic low order PDEs. After extensive benchmarking, we apply the method
to experiments with microtubule-based active nematics, finding a surprisingly minimal description of the
system. Our approach can be generalized to gain insights into active gels, microswimmers, and diverse

other experimental active matter systems.
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Active nematics demonstrate how energy-consuming
motile constituents can self-organize into diverse non-
equilibrium dynamical states [1-3]. They offer a versatile
platform to advance our fundamental understanding of
nonequilibrium physics and develop materials with proper-
ties that are thermodynamically forbidden in equilibrium.
These twin goals require theoretical models that reveal the
mechanisms underlying the emergent dynamics, and guide
rational design to elicit desired spatiotemporal dynamics.
Here, we combine data-driven model discovery with
experiments and computational modeling to identify the
most parsimonious model for an experimental realization of
active nematics. Using the discovered model, we identify
the relationship between key theoretical parameters, such as
the magnitude of activity, and experimental control vari-
ables. The described methods can be applied to diverse
active nematics ranging from shaken rods to motile cells
[4-9], and other forms of active matter.

Our target is a quantitative description of microtubule-
based active nematics. Being reconstituted from tunable
and well-characterized components, they afford a unique
opportunity to develop continuum theory models and
connect these to the microscopic dynamics [10-12].
Hydrodynamic theories, built on purely symmetry consid-
erations, have provided insight into dynamics of active
nematics in general, and the microtubule-based system
specifically. For example, such models have been used to
describe defect dynamics [13—18], induced flows in the
suspending fluid [19-21], and how confinement in planar
[22-24] and curved geometries [25-27] controls defect
proliferation and dynamics. These efforts employed a range
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of hydrodynamic models that assumed different symmetry-
allowed terms, and the parameters of the model were
largely undetermined. Thus, the field lacks a quantitative
model and understanding of magnitudes and sources of
error in existing approximations.

Data-driven approaches and machine learning have been
successfully applied to study active matter [28]. However,
previous studies for active nematics were limited to param-
eter optimization with a preassumed model [16,29], or
machine learning forecasting [30,31] which, while success-
ful, does not provide an analytical equation for the learned
dynamics. To overcome these limitations, we build on the
Sparse Identification of Nonlinear Dynamics (SINDy)
framework [32,33] that was recently applied to particle-
based simulations of active matter [34] and computational
and experimental data of overdamped polar particles [35].
This method filters out the best parsimonious fit to the data
from a highly generalized class of potential models. We
adapt key improvements of this method [36-39] to the
microtubule-based active nematics system. We then employ
extensive birefringence and fluorescence measurements of
microtubule alignment and PIV (particle image velocimetry)
measurements of velocities, to identify equations governing
both the orientational dynamics and the activity-driven
flows. This enables direct inference of the underlying model
that is rigorously supported by experimental data. In contrast
to the hard-to-interpret deep neural nets generated by
machine learning approaches, our method yields an optimal
analytical model and estimated parameter values.

With the available alignment and velocity measurements,
we seek models describing the active nematic as a single

© 2022 American Physical Society
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2D fluid with nematic symmetry [12,40]. Hence, there are
two fields: the symmetric-traceless nematic tensor order
parameter Q = s[n ® n — (1/2)1I] and a flow field u, with
n as the local orientation unit vector and s the scalar order
parameter. We assume constant density and an incompress-
ible fluid: the former is justified since the scalar order
parameter captures density variations near the defects (see
below); the latter is validated by numerical measurements
of the divergence of the velocity field [41]. Our model then
consists of four independent scalar fields: Q,, Q,,, uy, uy,
and a latent variable P (pressure).

We begin by postulating the generalized form of the
model. The Q-tensor dynamics takes the form common to
all continuum theories of active nematics:

0,.0;; = Y _akFi(Q.u.VQ,Vu, ...) (1)
k

where the F';’s are combinations (potentially nonlinear) of
Q, u, and their spatial derivatives up to a maximum order,
and the afj’s are the corresponding phenomenological
coefficients. For instance, in 2D, a well-known model
for the Q equation is [12]:

9,Q+u-VQ-S=DH (2)

where S =—-(Q-Q—-Q - Q)+ 1E —21Q(Q:Vu) is the
corotation term and H = a,Q + a,Tr(Q?)Q + KV?Q is
the negative gradient of the liquid crystal free energy. Here,
Eij = (aluj + dju,)/2 and Q’J = (all/lj - dju,)/2 are the
strain rate and vorticity tensors, respectively, 4 is the flow
alignment parameter, D, is the rotational diffusion coef-
ficient, K is the elastic constant, and a, > 0, a4 < 0 are
phenomenological coefficients corresponding to the iso-
tropic-nematic transition. (See Supplemental Material [42],
which includes Refs. [30,43-47], for further discussion.)
We build a library of the terms F, (n = 246 terms) that can
capture models well beyond Eq. (2). Further, we make no
physics-based simplifying assumptions, e.g., translational,
rotational, and Galilean invariance, for the alignment
equation [Eq. (1)]. Hence, discovery of a model which
satisfies these conditions is a test of the algorithm (see
Supplemental Material [42]).

For the flow equation, the usual form assumed for model
discovery is Navier-Stokes-like, with the time derivative
on the left side and rest of the terms on the right side
[33,37-39]. However, because the active nematic is in the
low Reynolds number regime [15,20], the significance
of the time-derivative term itself needs investigation.
Indeed, active nematic flows have been modeled using
pure Stokes [30,48,49], unsteady Stokes [20,50], and full
Navier-Stokes [12-14,19,22,51-55] formulations. While
these approaches have been compared numerically [56],
there has yet to be a definitive indication of the contribu-
tions of the inertial terms for this system. Since the viscous

forcing is guaranteed to exist in this regime, we assume a
form

Vu = cdu+ > ¢H;(Q.u.VQ.Vu,...) (3)

with V - u = 0, and the time derivative on the right-hand
side so that its contribution can be evaluated. For instance,
the lowest order symmetry-allowed “active stress” in the
flow equation is the well-known —aQ, with @ > 0 being the
extensile “activity” [12,57]. In our model form, this gives a
general flow equation:

Viu =cyou +ciu-Vu+c,VP +¢;3V-Q + ...

with the coefficient c3 as the ratio of the activity to the
viscosity, a/7.

We perform model discovery from the data as follows
[58]. Setting N,, Ny, and N, as the number of measure-
ments in the two spatial dimensions and time, respectively,
we randomly select m of the total N,N,N, space-time
points. At each selected space-time point, we evaluate a
linear system, e.g., for the Q,, equation, (0,0,\),x1 =
Fouscn * Gpx- The derivatives are computed numerically,
which amplifies noise in the data. To mitigate noise, we use
two different approaches. In the integral formulation, for
each of the m selected space-time points and n terms, we
compute a local average in space and time in a small
window (e.g., 5 x5 x5 pixels) [36]. This approach is
effective for model discovery, but leads to inaccurate
parameter estimates for the flow equation—since pressure
is not an observable in the experiments, we must perform
the operation Z - Vx on the flow equation [33,37], which
adds one more order of derivatives, amplifying the noise.
To obtain more powerful noise mitigation at the cost of
additional analytical effort, we adapt a weak formulation of
the PDE regression problem [38,39]. Briefly, we fit the data
to the weak form of Eq. (3):

/ w- [V2u = cpou+cju-Va + ... (4)
Q

By choosing an appropriate test function w (such that the
boundary terms vanish after integration-by-parts), we can
move the derivatives from the noisy experimental data to
the exact test functions, and also integrate out latent
variables using integration-by-parts (in this case by making
w divergence-free, see Supplemental Material [42]). The
terms included in the library are in Table S1.

Next, we seek optimal fits to these equations with the
minimum number of nonzero terms, thus yielding an
interpretable model that accurately describes the data but
avoids overfitting. To this end, we perform Ridge regres-
sion (least-squares gives similar results), starting with all
the terms in the library, and then eliminating the least
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important terms one by one to obtain a hierarchy of models
[36]. Obtaining the R? value at each step, we plot the
optimality curve as the logarithm of (1 — R?) as a function
of the number of nonzero terms left in the model. We define
the optimal number of terms n* as the n value at which the
second derivative of the curve is highest, indicating the
largest drop in log(1 — R?).

To demonstrate the validity of our approach, we first
benchmark it against data generated by numerical simu-
lations (Fig. S1, Table S2, which includes Refs. [59,60]).
We consider two qualitatively different models for flow:
one is purely Stokesian with substrate friction, and the other
is unsteady Stokes flow [20,50]. After adding synthetic
noise to the simulation data, we apply the integral formu-
lation to the alignment equation and the weak formulation
to the flow equation. The framework returns the correct
equations with very small errors in the identified coef-
ficients (Figs. S1, S2, and S3 [42]). Thus, we estimate
important phenomenological parameters directly from the
data, including the activity level a, bending modulus K,
flow alignment coupling 4, and bulk free energy coeffi-
cients a, and a4. Further benchmarking against varying
window sizes and noise levels (see Supplemental Material
[42]) indicates that the integral formulation benefits from
high resolution, low noise data whereas the weak formu-
lation benefits from a large amount (in space and time)
of data.

Next, we perform model discovery on experimental
microtubule-based active nematics [Fig. 1(a), Supplemental
Material [42] which includes Refs. [61-66]]. Coarse-
graining the director, we obtain a Q-tensor field that
contains the spatially varying scalar order parameter and
orientation [Fig. 1(b)]. The low-fluorescence-intensity
regions, corresponding to low microtubule density near
the defect cores, are correlated with the low-scalar-order-
parameter regions, thus capturing the density variation near
the defects (Movie S1 [42]). This justifies the constant
density assumption. The velocity is obtained from PIV
analysis [Fig. 1(c)]. We varied the ATP concentration,
which determines the motor stepping speed and thus
determines the structure and dynamics of active nematics.
We collected the data on a field of view several vortex
diameters wide [Fig. 1(c)] for long times (> 20 velocity
autocorrelation times, defined below). In addition, we
acquired one more dataset with higher resolution but a
smaller field of view, denoted as the “HR-SF” data [67] (see
Fig. S4 [42]). Optimality curves for the alignment and flow
equations, respectively, [Figs. 1(d) and 1(e)] lead to the
following optimal model:

0Q=-u-VQ-(Q-Q-Q-Q)
+E-2(Q:Vu)Q + KV?Q
nV?u = +aV-Q + VP. (5)
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FIG. 1. Discovering active nematic hydrodynamics from ex-

perimental data. (a) A representative fluorescence image of the
microtubule-kinesin active nematic at an ATP concentration of
100 pM (scale bar is 200 pm). (b) The computed director field
and scalar order parameter S, and (c) the flow field and vorticity @
for the data in (a). (d) Optimality curves, log(1 — R?) vs number
of nonzero terms, for the Q,, equation from the indicated
datasets. The beginning of each arrow corresponds to the
threshold corresponding to the highest-order term included in
the optimal model. (e) Optimality curves for the weak-form flow
equation. In the cases highlighted with the dashed oval, the
optimal model contains only the activity term, V - Q, consistent
with Stokesian dynamics. In (d),(e) the purple triangles corre-
spond to the high-resolution, small field-of-view (HR-SF) data-
set, while the blue, orange, green, and red circles correspond to
25 pM, 50 pM, 100 pM, and 500 pM ATP, respectively. (f) Val-
ues of the coefficients of key flow-coupling terms appearing in
the optimal models for various ATP concentrations. The colors
are the same as in (d),(e). (g) The fit coefficient of the activity
term, «/7, as a function of the ATP concentration (green circles).
This quantity closely matches the inverse of the velocity
correlation time (blue triangles), suggesting that a/5 corresponds
to a relevant timescale in the system.

Note that we added the term KV?Q because this or an
analogous term with higher order derivatives must be
present for stability, discussed further below.

We arrived at this model as follows. For the alignment
equation, the HR-SF dataset [purple triangles in Fig. 1(d)]
has a low error (R?> = 0.97) and an abrupt shoulder that
clearly defines a threshold for the optimal model. In
comparison, the lower resolution data sets have larger
error (see Table S3 [42]) and less distinct thresholds.
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FIG. 2. Comparisons of results from simulations using the
discovered optimal model against the experimental data. (a) In-
verse lifetime of +1/2 defects plotted as a function of a/# for
experiments at different ATP concentrations (green circles) and
simulations using the optimal model performed with different
values of a/n (blue squares). For the experiments, the value of
a/n is obtained from the discovered optimal model at each ATP
concentration. The height of the error bars is twice the standard
error of mean. (b) Defect density plotted against a/n from
experiments (green circles) and simulations using the optimal
model (blue squares). The density in the simulations is scaled by
a constant. The height of the error bars is twice the standard
deviation.

Consistent with the benchmarking of numerical data
described above and in Supplemental Material [42], these
results show that high resolution is more important than a
large field-of-view for determining the alignment equation.
The threshold chosen for each dataset is indicated by the
tail of the corresponding arrow in Fig. 1(d), and the
resulting model for each data set is given in Table S3
[42]. Table S4 [42] gives the lowest-order terms beyond the
threshold. For all datasets, the optimal model is dominated
by flow-coupling terms, such as the convective and rota-
tional derivatives and flow alignment. Equation (5) corre-
sponds to the optimal model for the HR-SF dataset, and
with the exception of the higher-order flow-alignment term
2(Q:Vu)Q, two of the low-resolution datasets. For other
datasets, there is some variability in the terms near the
threshold (Tables S3 and S4), but the terms in Eq. (5) are all
present near the threshold, and other near-threshold terms
can be eliminated because they violate known symmetry or
conservation criteria for the system. We include the higher-
order flow-coupling term because the HR-SF dataset has
the highest statistical accuracy and because it is expected
theoretically for stability of the nematic order parameter.
We attribute the variability in the near-threshold terms for
the low-resolution datasets to statistical inaccuracies arising
from the limited experimental data and the small contri-
butions of these terms, rather than different physics being
present at different ATP concentrations. These results
highlight the importance of the amount and resolution of
data for accurately determining the alignment equation.
The alignment equation recovers Galilean invariance
from the data: the convective and corotational derivatives
have coefficients of ~1 [Fig. 1(f)]. Furthermore, the flow

alignment parameter, A~ 1 [Fig. 1(f)], is consistent
with the theoretical result for the high aspect ratio
a>1 of the microtubules, A = (a*>—1)/(a*>+1) -1
[68]. Importantly, the bulk liquid crystal free energy terms
that stabilize nematic order [with coefficients a, > 0 and
ay < 0, see Eq. (2)] are not present in the discovered model
for any dataset [69]. This finding supports a previous model
[54] which argued that active flow alignment acts as an
effective free energy that drives nematic order. These
results indicate that the alignment dynamics are dominated
by flow coupling. In comparison, contributions from the
free energy dissipation to the dynamics are negligible.
Elastic distortion energy terms [70,71] only appear above
the threshold (see Table S4 [42]). However, a term of the
form KV2Q, which contains the elastic terms in the single
constant approximation, is required for numerical stability.
Moreover, the elastic terms play a key role in determining
the structure of a nematic in the vicinity of defects. To
understand this apparent contradiction, we compare the
contributions of the distortion energy with flow-coupling
terms as a function of space (Movie S2 [42]). This shows
that the elastic terms are small everywhere except near
defects. When combined with the fact that the majority of
the experimental data is far from defects due to their
small core size and finite density, this is the likely reason
for the absence of elastic terms in the discovered
model (Fig. S5).

The optimality curves for the flow equation are almost
flat [Fig. 1(e)], showing that the active force a/nV -Q
alone balances the viscous force. Noting that this is a fit to
the weak form of the equation, we test the strong form of
the discovered equation by comparing the spatial depend-
ence of V x V?u with a/»V x V - Q and find good agree-
ment (Movies S3 and S4 [42]). The inertial terms are absent
(not appearing until n ~ 5), indicating that the Stokes flow
approximation accurately describes the experimental active
nematic. Finally, the absence of the substrate friction term

I'u indicates that the screening length +/5/T" is larger than
the typical vortex size of the flows. This result likely
depends on the active nematic system and experimental
conditions; for example, changing the substrate depth
affects the effective friction coefficient [72]. However,
the framework presented here can be applied directly to
other conditions or materials.

The discovered flow equation provides a direct estimate
of the scaled activity parameter «/#, an intrinsic “active
timescale” [73], as a function of the ATP concentration
[Fig. 1(g)] [74]. Determining the relationship between
activity and experimental control parameters has been a
significant challenge [21]. The molecular motors that
generate activity also act as passive cross-linkers between
steps [76], and in a dense active nematic, forces generated
by different motors are largely noncooperative [77]. To
test the estimate of o against an independent observable,
we compare the active timescale to the velocity
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autocorrelation time 7, defined as C,(z) = 1/e, with the
autocorrelation function C,(f)= ((u(r,” +1)-u(r,t)),/
(u(r,?)-u(r,?)),),. These observables closely agree at
all ATP concentrations [Fig. 1(g)].

Finally, we test the optimal model by performing
simulations of Eq. (5). For numerical stability, we include
the KV2?Q term in the Q equation with K = 1 in dimen-
sionless simulation units. We compare the mean defect
lifetime and defect density [78,79] as a function of a/n
(Fig. 2). Remarkably, the defect lifetimes for experiments
and simulations align well without any fit parameters
[Fig. 2(a)]. The defect densities from experiment and
simulation also match, up to a constant scaling factor
[80] [Fig. 2(b)]. The latter cannot be specified—because
the terms in the discovered alignment equation all have
dimensionless coefficients, we cannot directly estimate a
length scale [81].

In summary, we have applied a data-driven method to
identify equations governing both the orientational dynam-
ics and the activity-driven flows of microtubule-based
active liquid crystals. The optimal model is surprisingly
minimal. It demonstrates that (1) flow coupling dominates
the orientational dynamics, and (2) the lowest-order active
stress, proportional to the local orientational order, together
with the vanishing Reynolds number limit describe the
flow. This model is not only consistent with previous
theoretical arguments [54], but is also less complex than
most models considered in the literature. Our results also
show that statistical uncertainty arising from limited exper-
imental data impedes unequivocal identification of near-
threshold terms, but suggest strategies to mitigate these
effects. For example, acquiring a combination of high-
resolution small field-of-view and low-resolution large
field-of-view datasets would enable more accurate discov-
ery of the alignment and flow equations, respectively.
Further, acquiring more data in the vicinity of defects
and/or additional analysis that preferentially weights data in
the vicinity of defects may identify elastic energy terms.

The identified equations enable mapping between key
model parameters and experimental control variables,
including the elusive relationship between the magnitude
of activity and ATP concentration. Thus, our results are the
first to assess the quantitative variation of phenomenologi-
cal theory parameters as a function of experimental control
knobs in active nematics, while also providing evidence for
the validity of the underlying model. Through comparison
of several noise reduction approaches and extensive bench-
marking, we have identified an approach to model discov-
ery which is highly robust against experimental noise. This
approach can be extended to study recently developed 3D
active nematic materials [49,82,83], complementing
existing theoretical and numerical efforts [48,52,84-88].
It can be applied to a wide variety of active matter systems,
or more broadly, to any system for which observations of
dynamics can be projected onto continuous fields. This

process can shed light on relationships between physical
quantities or even identify new physical mechanisms.
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