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We construct a semiclassical theory for the transport of topological Josephson junctions starting from a
microscopic Hamiltonian that comprehensively includes the interplay among the Majorana qubit, the
Josephson phase, and the dissipation process. With the path integral approach, we derive a set of
semiclassical equations of motion that can be used to calculate the time evolution of the Josephson phase
and the Majorana qubit. In the equations we reveal rich dynamical phenomena such as the qubit-induced
charge pumping, the effective spin-orbit torque, and the Gilbert damping. We demonstrate the influence of
these dynamical phenomena on the transport signatures of the junction. We apply the theory to study the
Shapiro steps of the junction, and find the suppression of the first Shapiro step due to the dynamical
feedback of the Majorana qubit.
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Introduction.—Josephson physics has received renewed
interest due to the rapid progress of superconducting
quantum computation in recent years [1,2]. The demand
for theminification of the superconducting quantum circuits
pushes the limits of the size of Josephson junctions [3,4]. For
junctions that are small enough, a single embedded qubit
may significantly modify the transport signatures [5]. While
this effect has been discussed in a number of systems with
variousmodels [6–8], a comprehensive theory that takes into
account the qubit dynamics is still absent.
This issue is particularly relevant to topological

Josephson junctions with Majorana zero modes [9–35].
The two Majorana zero modes in the junction construct a
Majorana qubit which results in a 4π-periodic Josephson
current [36,37]. Previous theoretical studies take a variety
of phenomenological models which are different exten-
sions of the standard resistively shunted junction model for
conventional junctions [6,7,38–42]. However, these phe-
nomenological models still have difficulties in explaining
the experimental reported transport features such as the
suppression of the first Shapiro step [43–50]. It is highly
desirable to construct a microscopic theory to examine the
validity of the phenomenological models and to understand
the experimental results.
In this Letter, we develop a semiclassical theory for

studying the transport properties of the topological junc-
tions. Our theory starts from a microscopic Hamiltonian
that characterizes the coupling between the Josephson
junction and the Majorana qubit. We take a path integral
approach to incorporate the dissipation process that is
essential for studying the transport properties and derive

the semiclassical equations of motion for the Josephson
phase and the Majorana qubit. In the equations of motion,
we identify the effective spin-orbit torque and the Gilbert
damping in the qubit dynamics and reveal the charge
pumping driven by the qubit rotation in the dynamics of
the Josephson phase. Solving the equations of motion, we
obtain the time evolution of the Josephson phase which
provides transport and spectroscopic signatures for the
junction.
As an application of this theory, we calculate the Shapiro

steps of the topological junction. We find that the first step
is strongly suppressed while higher odd-number steps are
robustly visible for a range of junction parameters. We
show that this bizarre behavior is due to the feedback of the
Majorana qubit dynamics to the transport of the junction.
At the voltage of the first step, the Majorana qubit evolves
to a stable state which supports a finite 4π-period Josephson
current, and this 4π periodicity in the Josephson phase
dynamics suppresses the first Shapiro step. At voltages of
higher odd-number steps, however, the Majorana qubit
evolves to a stable state which contributes a vanishing 4π-
period Josephson current, and the Shapiro steps are
naturally intact. Our theory provides an intrinsic mecha-
nism for the reported Shapiro step missing in topological
junctions.
Microscopic Hamiltonian and equations of motion.—

The low-energy effective Hamiltonian for the junction with
a Majorana qubit can be written as [51]

HJ ¼
p̂2
θ

C0

− EJ cos θ̂ − Iexθ̂ − EMσz cos
θ̂

2
þ E0

Mσx; ð1Þ

PHYSICAL REVIEW LETTERS 129, 257001 (2022)

0031-9007=22=129(25)=257001(7) 257001-1 © 2022 American Physical Society

https://orcid.org/0000-0003-4788-6737
https://orcid.org/0000-0002-1023-8683
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.257001&domain=pdf&date_stamp=2022-12-16
https://doi.org/10.1103/PhysRevLett.129.257001
https://doi.org/10.1103/PhysRevLett.129.257001
https://doi.org/10.1103/PhysRevLett.129.257001
https://doi.org/10.1103/PhysRevLett.129.257001


where θ̂ is the Josephson phase with canonical momentum
p̂θ ¼ −i∂θ, EJ is the Josephson energy, C0 ¼ 2C=ð2eÞ2 is
determined by the effective capacitance C of the junction
(set ℏ ¼ 1), Iex represents the experimentally controllable
external current injected into the junction, σx;z are Pauli
matrices which represent the pseudo-spin direction for the
Majorana qubit, EM and E0

M represent the energies of the
Majorana qubit from various couplings between Majorana
zero modes. The first three terms of the Hamiltonian have
been widely adopted for studying conventional Josephson
junctions [5], while the last two terms come from the
Majorana zero modes [36,52] and can be derived from the
Bogoliubov–de Gennes Hamiltonian of a topological
Josephson junction [53,54].
This Hamiltonian can be understood as describing a

spin-one-half particle with a mass of C0, moving under a
potential energy Up ¼ −EJ cos θ − Iexθ, and a Zeeman
energy Uz ¼ h · σ̂, where the direction of the Zeeman field
h ¼ ½E0

M; 0;−EM cosðθ=2Þ� varies along the path of the
motion. The potential energy is identical to the tilted-
washboard potential that was taken in studying conven-
tional junctions [5], while the unique Zeeman energy
comes from the coupling between the Josephson phase
and the Majorana qubit.
The time evolution of the Josephson phase determines

the transport properties of the junction through the ac
Josephson relation [55]. To derive the equation of motion
for this time evolution, we rewrite the Hamiltonian of
Eq. (1) into an action [51,56,57],

SJ ¼
Z

dt

�
C0

2
_θ2þEJ cosθþ IexθþAs · _sþh · s

�
; ð2Þ

where s ¼ ψ†σ̂ψ ¼ ðsinφ sinϕ; sinφ cosϕ; cosφÞ repre-
sents the psuedo-spin state on the Bloch sphere with ψ ¼
½e−iϕ cosðφ=2Þ; sinðφ=2Þ� the spinor wave function of the
qubit, As ¼ êϕð1 − cosφÞ= sinφ represents the Berry con-
nection on the Bloch sphere [57], which provides a Berry
curvature of ∇ ×As ¼ s. The extreme action path of
Eq. (2) gives the semiclassical equations of motion for
the Josephson phase Cθ̈=2eþ Ic1 sin θ þ Ic2sz sinðθ=2Þ−
Iex ¼ 0, and the pseudo-spin _s ¼ h × s, where Ic1 ¼
2eEJ=ℏ is the supercurrent from the Cooper pair tunneling
and Ic2 ¼ eEM=ℏ is the supercurrent from the half-pair
tunneling through the Majorana qubit. The equations of
motion explicitly demonstrate the coupling between the
Josephson phase and the Majorana qubit through the sz-
dependent Zeeman term in the first equation and the θ-
dependent effective magnetic field in the second equation.
However, these equations are inadequate for studying the
transport properties of the junction. The missing piece is the
dissipation process.
To include the dissipation into the equations of motion

[58–60], we follow the Caldeira-Leggett approach and
introduce a thermal bath of harmonic modes to characterize

the environment [61,62]. The environmental degrees of
freedom and their coupling with the junction can be
described with the action [51]

Sen ¼
X
i

Z
dt

�
1

2
ð _h2i − Ω2

i h
2
i Þ þ hiðgiθ þ Bi · sÞ

�
; ð3Þ

where hi are the coordinates of the environmental modes
and Ωi are their oscillating energies, gi represents the
minimal coupling between the environmental modes and
the Josephson phase [62], and Bi represents the minimal
coupling between the environmental modes and the qubit
[63]. The details of gi and Bi are determined by the
coupling between each environmental mode and the
junction. For topological junctions described by Eq. (1),
the environmental modes that modulate the tunneling
barrier of the junction can be understood as a fluctuation
on the amplitude of EM and we have Bi ¼ Biẑ, while the
environmental modes that modulate the coupling between
Majorana zero modes in one side of the junction can be
understood as a fluctuation on E0

M and we have Bi ¼ Bix̂.
The dissipated evolution of the junction can be obtained

by integrating out the environmental degrees of freedom.
This is achievable since the environment is modeled with
harmonic modes. After the integration, we arrive at an
effective action for the junction variables [51],

Seff ¼
Z

dt

�
C0

2
_θ2 þ EJ cos θ þ Iexθ þAs · _sþ h · s

�

þ 1

4

Z
dtdt0½ηαðtÞ − ηαðt0Þ�Gαβðt; t0Þ½ηβðtÞ − ηβðt0Þ�;

ð4Þ

where ηα ¼ ðθ; sx; sy; szÞ represents the junction degree of
freedom, and Gαβðt; t0Þ ¼ −iðM̃=πÞð1=jt − t0j2Þ is the aver-
aged Green function from the environmental modes, with
M̃ the averaged coupling matrix [51]. The least action path
for this effective action provides the full semiclassical
equations of motion for the junction variables,

Iex ¼ Cθ̈ þ
_θ

R
þ Ic1 sin θ þ Ic2sz sin

θ

2
þBf · _s; ð5aÞ

_s ¼ h × sþ _θBf × sþ ðγ̃ · _sÞ × s; ð5bÞ

where R ¼ 1=
P

i g
2
i is the effective resistance of the

junction which comes from the coupling between the
environment and the Josephson phase, Bf ¼ P

i giBi is
the environment mediated coupling field between the
Josephson phase and the qubit, and γ̃αβ ¼

P
i BiαBiβ

represents the environment-induced dissipation to the
qubit.
Equation (5) is the central result of this Letter. Solving

these two self-consistent equations we can obtain θðtÞ
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which determines the dc and ac voltage of the junction
through the Josephson relation VðtÞ ¼ ℏ_θðtÞ=2e. Starting
from a microscopic Hamiltonian, we provide a framework
to study the transport properties of a Josephson junction
with an embedded Majorana qubit.
Physical interpretation of the equations of motion.—Let

us set up a physical picture for interpreting the terms in the
equations of motion, particularly those terms coming from
the embedded Majorana qubit. Equation (5a) is a current
conservation equation which states that the externally
injected current Iex equals the current flowing through
all the physical channels in the junction. If the qubit is
completely ignored, then the last two terms on the right-
hand side of Eq. (5a) should be dropped out and the
equation becomes a self-consistent equation for the
Josephson phase. This is exactly the resistively and
capacitively shunted junction model that has been widely
used for studying bulk Josephson junctions [5].
The qubit provides two additional terms in Eq. (5a) as

illustrated in Fig. 1(a). The first term is the 4π-periodic
Josephson current Ic2sz sinðθ=2Þ, which is linearly depen-
dent on the z component of the pseudo-spin. This is the
extensively discussed fractional Josephson effect
[36,53,64], which comes from the qubit assisted half-pair
tunneling in the junction. The other term is Bf · _s which is
nonvanishing only when the pseudo-spin rotates. Since the
pseudo-spin state of the Majorana qubit is defined by the
parity of the superconducting ground state, this current
represents the pumped current by the parity flipping of the
Majorana qubit. This qubit pumping has never been
revealed in previous models, and only becomes apparent
from the effective action of the microscopic theory.

Now we take a closer look at Eq. (5b). In the absence of
the environment, only the first term on the right-hand side
of the equation survives. The residing equation, _s ¼ h × s,
describes a qubit precession where the direction of the
precession h oscillates with θ. When the oscillating
component hz is much larger than the stable component
hx, the qubit would evolve under an oscillating energy
spectrum shown in Fig. 1(b). This evolution can be
understood with the Landau-Zener transitions which
happen at the anticrossing points θ ¼ ð2nþ 1Þπ.
Multiple coherent Landau-Zener transitions can exhibit
Stückelburg interference [6,65,66]. Meanwhile, the evolu-
tion can also be characterized with the instantaneous
eigenstates of h · σ̂, where additional _θ linear Berry
connection contributions would appear [51,67,68].
The second term on the right-hand side of Eq. (5b) is a

unique discovery of our theory. It resembles a spin-orbit
torque which linearly depends on the velocity of the
Josephson phase. This spin-orbit torque dominates the
qubit dynamics at high voltage of _θ ≫ E0

M=ℏ, causing a
significant suppression of the energy crossing and the
Landau-Zener transition, as shown in Fig. 1(c). For this
reason, the transport and spectroscopic signals of the
junction are expected to exhibit qualitatively different
behaviors for different voltage regimes. This is useful
for understanding the voltage-dependent signatures that
have been widely reported in the I-V characteristics curves
and Josephson radiations of Josephson junctions con-
structed by topological systems [10,13,22].
The third term on the right-hand side of Eq. (5b) is the

anisotropic Gilbert damping which determines the dissi-
pation of the qubit from the coupling to the environment.
For the isotropic case where the matrix γ̃ becomes a
number, this term turns into the standard Gilbert damping
which appeared in the Landau-Lifshiz-Gilbert equation
[69]. While the Gilbert damping has been widely taken
to study the dynamics of the magnetization, our Letter
provides a derivation for its appearance in topological
junctions with a Majorana qubit. This damping process
influences the dynamics of the qubit and thereby modifies
the transport properties of the junction.
We note that our theory is not only useful for calculating

transport properties. It can also be used to study dynamical
features of the junction such as the Josephson radiation.
Also, the qubit pumping suggests a novel current flow from
the dynamics of Majorana qubit. These features might be
useful for experimental measurement of the quantum
rotation of the Majorana qubit. Finally, we hope to point
out that if the environment mediated coupling Bf and the
Gilbert damping γ̃ are ignored, then Eq. (5) will reduce to
the phenomenological quantum resistively and capacitively
shunted junction model that has been taken to study the I-V
characteristics and the Josephson radiations of the topo-
logical junction [6,66]. Our microscopic theory clarifies the
validity and limits of the phenomenological model.

TSC TSC

Majorana qubit

(a)

(b)

0 1 2
-1

0

1
(c)

0 1 2
-1

0
1

FIG. 1. (a) Schematic illustration of two tunneling processes
through the Majorana qubit: the qubit assisted half-pair tunneling
that leads to the fractional Josephson effect and the qubit rotation
induced charge pumping. (b) The energy levels of the Hamil-
tonian h · σ̂. Landau-Zener transitions happen at the anticrossing
points at θ ¼ ð2nþ 1Þπ. (c) The energy levels of the Hamiltonian
ðhþ _θBfÞ · σ̂ for high voltage of _θ ≫ EM=Bf , where Bf ¼ Bfx̂.
The Landau-Zener transition at the anticrossing points are
significantly suppressed and the qubit dynamics would follow
one of the levels.
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Fixed point analysis.—Equations (5) are complicated
nonlinear equations for which obtaining analytical solu-
tions is impossible. However, the fixed points of the
equations can be analytically calculated with the method
of averaging, which is a method to decouple the nonlinear
equations with the division of the dynamical variables to
the “fast variables” and the “slow variables” based on their
timescales [70]. In Eq. (5) we treat the psuedo-spin s as the
slow variable since it has a larger timescale. We take it as
constant to solve Eq. (5a) for the fast variable θðtÞ, and the
solution provides the time-averaged Josephson energyR
dtEM cos θðtÞ=2 ≈ αszEM. Plugging this into Eq. (5b),

we obtain an approximated self-consistent equation for s,
and the fixed points of this equation can be determined
analytically. There are two sets of fixed points. The first is
the trivial fixed points at s0 ¼ �ð1; 0; 0Þ which are stable
fixed points for all parameters. If the system evolves toward
these fixed points, the 4π-periodic Josephson current in
Eq. (5a) vanishes and all experimental 4π-periodic sig-
natures would disappear. The other set of fixed points
locates at [51]

s1¼�½ðE0
MþV0BfÞ=EMα;0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðE0

MþV0BfÞ2=E2
Mα

2

q
�;

ð6Þ
which are stable fixed points only when the injected current
is small so that the dc voltage is smaller than a critical value
of Vc ¼ jEMα − E0

Mj=Bf. For quantum spin Hall insulator
junction [45], it is estimated to be around 10–100 μV [51].
The existence of these fixed points is voltage dependent,
which is qualitatively different from the trivial fixed points.
These analytical results for fixed points provide insight

into the experimentally reported voltage-dependent behav-
iors of topological junctions [10,13]. From the fixed point
analysis, we find two different voltage regimes. At dc
voltage below Vc, there are two sets of fixed points, and the
system has a chance of evolving to either of them. If the
system evolves to the fixed point s1 as shown in Fig. 2(a),
the final stable state would have a nonvanishing sz and
therefore a nonvanishing 4π-periodic Josephson current
shows up in the equation for the Josephson phase. In this
voltage regime, we should expect transport signatures for
4π periodicity. However, for the voltage above Vc, there
exits only the trivial fixed points at s0. When the system
evolves toward it as shown in Fig. 2(b), the final stable state
would have a vanishing sz, and the 4π-periodic Josephson
current vanishes. In this voltage regime, all the transport
signatures for the 4π periodicity should disappear. Based on
this fixed point analysis, we predict that the transport of
topological junctions would exhibit nontrivial 4π-periodic
signatures only at low voltage, while at high voltages it
would look quite similar to the trivial junctions.
Shapiro steps.—The Shapiro steps are the plateaus of the

I-V curve at voltages Vn ¼ nℏω=2e under an injected ac
current with frequency ω. It is a powerful tool for probing
the dynamics of Josephson junctions since it reflects the
resonance between the dc and the ac Josephson relation.

For topological junctions, it was anticipated that the
odd-number Shapiro steps with n ¼ 1; 3; 5… should be
suppressed by the 4π-periodic supercurrent. The experi-
mental results, however, often show strong suppression of
low order odd-number steps such as the one with n ¼ 1,
while other odd-number Shapiro steps at higher voltages
are robust. Since the understanding of the experimental
results is crucial for detecting Majorana zero modes, it is
timely to implement Eq. (5) to calculate the Shapiro steps
of Majorana Josephson junctions.
We consider an injected current of IexðtÞ ¼ I þ I0 cosωt

and calculate the I-V curve of the junction, with the results
for a typical junction parameter shown in Fig. 3(a). We find

0 1 2
104

-1

0

1(a)

0 1 2
104

-1

0

1(b)

FIG. 2. Typical time evolution of the Majorana qubit for (a) the
low voltage regime of V < Vc and (b) the high voltage regime
of V > Vc. The damped oscillations are combined effect of the
Landau-Zener-Stückelburg interference and the Gilbert damping.
The two different stable values of the sz represent the different
fixed points in the dynamics of the Majorana qubit. Parameters of
the junction are taken as E0

M=EM ¼ 0.01, Ic1=Ic2 ¼ 0.5,
2eIc2R=EM ¼ 0.5, Bf ¼ 0.01x̂.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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0 100 200

-0.2
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0.2
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0 100 200

-0.2

0

0.2
(b)

FIG. 3. (a) The Shapiro steps for the topological Josephson
junction simulated with Eq. (5). The first Shapiro step is strongly
suppressed while all other steps are clearly visible. (b) The time
evolution of sz for the voltage around the first Shapiro step. The
pseudo-spin oscillates with a nonzero averaging value, and the
resulted 4π-periodic supercurrent strongly suppresses the first
step. (c) The time evolution of sz for the voltage around the third
Shapiro step. The pseudo-spin goes to the fixed point of sz ≈ 0
which effectively shuts down the 4π-periodic channel for the
Josephson current. Parameters are taken as ω=EM ¼ 1, I0=Ic2 ¼
8 with other parameters taken the same as in Fig. 2.
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Shapiro steps at V ¼ nℏω=2e, where n labels the number
of the step. Intriguingly, it is clear that the first Shapiro step
with n ¼ 1 is strongly suppressed, while all other steps are
clearly visible. At first glance, the suppression of only one
Shapiro step seems mysterious. One would expect a
suppression of all odd-number steps if the 4π-periodic
supercurrent carried by the Majorana qubit is significant, or
no suppression to any of the steps if the 4π-periodic
supercurrent is irrelevant. For this phenomenon, our theory
provides a possible mechanism: the feedback from the
dynamics of the Majorana qubit. As we have shown in the
analytical results, the Majorana qubit evolves to different
stable states for different voltages. We examine the qubit
dynamics at the voltages for the first step and the third step.
As shown in Fig. 3(b), at the voltage where the first step
should appear, the Majorana qubit evolves to the stable
state with a finite sz. Then the 4π-periodic Josephson
current will dominate and the Shapiro step is suppressed.
For the higher voltage of the third step, however, the
Majorana qubit evolves to a stable state with sz ≈ 0, as
shown in Fig. 3(c). Then the 4π-periodic supercurrent is
blocked, and the junction would behave similar to a
conventional junction presenting Shapiro steps. This feed-
back of the qubit dynamics provides a simple mechanism
for the suppression of the first Shapiro step, and gives a
possible explanation to one of the puzzles in the exper-
imental findings of topological superconductors.
We emphasize that, while our theory is derived for

topological junctions with Majorana qubit, it is actually
valid for any junction with an embedded qubit that can be
described by the low-energy effective Hamiltonian Eq. (1).
One such example is the Josephson junction with quantum
dots [8]. In this sense, our calculation of Shapiro steps
provides a signal for the feedback of an embedded qubit,
instead of a unique signature of Majorana zero modes.
Conclusion.—In summary, we constructed a semiclass-

ical theory for the topological Josephson junctions with an
embedded Majorana qubit. We revealed nontrivial qubit
dynamics such as the Landau-Zener transitions and the
anisotropic Gilbert damping. We found that the feedback of
the qubit dynamics strongly modifies the transport features
of the junction. We applied the theory to study the Shapiro
steps of the topological junctions and demonstrated the
suppression of the first Shapiro step which agrees with
recent experiments. We reveal that this phenomenon is due
to the voltage-selective feedback from the dynamics of
Majorana qubit.
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