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We show that fully localized, three-dimensional, time-reversal-symmetry-broken insulators do not
belong to a single phase of matter but can realize topologically distinct phases that are labeled by integers.
The phase transition occurs only when the system becomes conducting at some filling. We find that these
novel topological phases are fundamentally distinct from insulators without disorder: they are guaranteed to
host delocalized boundary states giving rise to the quantized boundary Hall conductance, whose value is
equal to the bulk topological invariant.
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Introduction.—The discovery of the quantum Hall effect
revealed that topology, a branch of mathematics, plays an
important role for understanding properties of quantum
materials. Topological quantum materials are typically bulk
insulators with boundaries that are perfect metals [1,2].
Further developments [2,3] showed that superconductors
can be topological, too. These developments led to the
complete classification of (noninteracting) topological
phases, the result known as tenfold way or “periodic table
of topological phases of matter” [4,5]. The modes that
appear on the boundary of topological quantum materials
are called topological and anomalous—they typically give
rise to either quantized electrical or thermal responses and
promise many applications in the areas of quantum comput-
ing [3], backscattering-free quantum transport, and even
catalysis [6].
More recently [7–15], it was shown that crystalline

symmetry adds a new twist to the topological classification:
a three-dimensional topological crystalline insulator or
superconductor can have topological modes (states) appear-
ing on its hinges (corners) while its faces (and hinges) are
insulating. Interestingly [10,16,17], crystalline symmetry
can turn an atomic insulator topological, in which case
they may or may not have fractionally quantized boundary
charges. Moreover, the crystalline symmetry facilitates the
discovery of topological materials [18–22], with many
thousand candidates being predicted [18,23] and some
experimentally confirmed [24–28].
Not only the boundary of a topological material but also

its bulk electronic states have intriguing properties: all
topological insulators, in the absence of crystalline and
sublattice symmetries, have an obstruction to full localiza-
tion of its occupied bulk electronic states [29]. This property
is best studied in the case of quantum Hall insulators [31],
where in the presence of disorder topology guarantees the
existence of a single energy per Landau level where
delocalized states appear. Similarly, the obstruction to full
localization was established for the case of quantum spin

Hall [32] and three-dimensional topological insulators [33].
Hence, within the tenfold-way paradigm, a fully localized
insulator (i.e., an Anderson insulator at all fillings) is
guaranteed to be topologically trivial.
In this Letter, we introduce a new notion of topology that

applies to fully localized insulators, i.e., Anderson insulator
at all fillings, in contrast to tenfold-way topological phases
which are required to be insulating only at one particular
filling [34]. In particular, we consider three-dimensional
systems without time-reversal symmetry and find topo-
logically distinct fully localized insulators that can be
labeled by integers. The phase transition can occur only
if the system becomes conducting at some filling. We refer
to these topologically nontrivial phases as “topologically
localized insulators” (TLIs). We show that, although all the
bulk states of a TLI are exponentially localized, there is an
obstruction to localizing them all the way down to an
atomic limit. Importantly, electronic states with support
close to the boundary carry quantized Hall conductance
which can be measured in the Corbino geometry via flux
insertion. Note that, for the slab geometry in Fig. 1(a), the
boundary consists of two disjoint planes with normals�êz,
and the Hall conductances of these two planes are quan-
tized to the opposite value due to their opposite orientation.
Furthermore, at each of these planes, topologically pro-
tected delocalized states [31] emerge and remain so under
an arbitrarily strong disorder at the boundary, see Figs. 1(b)
and 1(c). We conclude that the boundary of a TLI is
anomalous since it cannot be realized as a two-dimensional
system: a disordered two-dimensional Chern insulator can
host delocalized bulk states only up to disorder strengths
that do not close its mobility gap [36]. (A Chern insulator is
a finite-dimensional Hilbert-space version of a quantum
Hall insulator.)
Model.—We construct a TLI by stacking two-dimensional

layers in the z direction. We divide the Hilbert space spanned
by electronic orbitals of a single layer into the blue and the
orange subspaces, see Fig. 2(a). We require that for the blue
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(orange) subspace filled with electrons, the layer has Hall
conductance σxy ¼ e2=h (σxy ¼ −e2=h). Hence, not all blue
(orange) orbitals in Fig. 2(a) can be exponentially localized.
On the other hand, if we couple the blue orbitals from the
layer z to the orange orbitals from the layer zþ 1, the
hybridized orbitals can be all exponentially localized, as in
the case of eigenstates of the following tight-binding model
of a TLI:

H ¼
X

R⃗α;R⃗0α0
tR⃗

0α0

R⃗α
jR⃗αihR⃗0α0j; ð1Þ

with the hopping amplitudes and on-site potentials (for
R⃗ ¼ R⃗0) expressed as

tR⃗
0α0

R⃗α
¼

X

R⃗00α00
WR⃗00α00C

R⃗00α00

R⃗α
ðCR⃗00α00

R⃗0α0
Þ�: ð2Þ

The atomic orbitals of the above stack of layers are denoted
by jR⃗αi, with α ∈ f1; 2g an orbital degree of freedom and R⃗
a three-dimensional cubic lattice vector. WR⃗α are indepen-
dent, uniformly distributed in ½−W;W�, random real num-

bers. The coefficients CR⃗α
R⃗0α0

are defined through the lattice
vector basis expansion of the wave functions

jwR⃗αi≡ P−
z jR⃗αi þ Pþ

zþ1jðR⃗þ êzÞαi; ð3Þ

i.e., jwR⃗αi ¼
P

R⃗0α0 C
R⃗α
R⃗0α0

jR⃗0α0i, where Pþ
z (P−

z ) is the
projector onto the blue (orange) subspace of the layer z.
Such Pþ

z and P−
z can be obtained as the projectors on the

occupied and empty bands of a two-band (disorder-free)
Chern insulator defined on layer z (see Supplemental
Material [37] for a concrete model). It is crucial to note
that jwR⃗αi are exponentially localized, and orthonormal
hwR⃗0α0 jwR⃗αi ¼ δR⃗R⃗0δαα0 , leading to exponentially decaying

matrix elements tR⃗
0α0

R⃗α
, see Fig. 2(b). The exponential locali-

zation of jwR⃗αi follows from that of P�
z jR⃗αi [42], whereas

orthonormality can be satisfied only for the Hilbert space
onto which ðP−

z þ Pþ
zþ1Þ projects, see Supplemental

Material [37]. The states jwR⃗αi form a complete set of
localized eigenstates of H under periodic boundary
conditions.
From the above construction it is evident that for a

z-terminated crystal, there are unpaired blue (orange)
orbitals on the layer z ¼ 1 (z ¼ Nz) which, when filled
with electrons, give quantized Hall conductance σxy ¼ e2=h
(σxy ¼ −e2=h), see Fig. 1. Additionally, if a magnetic flux
quantum Φ0 ¼ h=e is threaded through the layers, the blue
subspace of each layer expands to accommodate one more
electron, while the orange subspace shrinks by the same
amount—this statement is know as Streda’s theorem [43].
Hence, if the bulk is fully filled with electrons, the applied
flux Φ0 transfers one electron from layer z to layer zþ 1
resulting in the bulk polarization Pz ∼ 1. Accordingly, the
corresponding component of the bulk magnetoelectric (ME)
polarizability tensor is quantized, ðαMEÞzz ¼ 1.
The construction presented above resembles pictorially

the construction of both the one-dimensional dimerized
Su-Schrieffer-Heeger model [44] and the Kitaev chain [3].
Despite this similarity, we find the obtained phase to be
truly three-dimensional: the quantized surface Hall con-
ductance takes the same value for every orientation of the
boundary, as we demonstrate numerically further below.
Furthermore, the bulk magnetoelectric polarizability tensor
is found to be isotropic αME ≡ ðαMEÞii ¼ 1. This statement
is further corroborated by the existence of a truly three-
dimensional bulk topological invariant.

FIG. 2. (a) TLI construction from stack of two-dimensional
layers in z direction. The Hilbert space of each layer is divided into
two subspaces spanned by blue and orange orbitals: occupying
only blue (orange) orbitals with electrons results in quantized Hall
conductance of the layer σ12 ¼ e2=h (σ12 ¼ −e2=h). The blue
(orange) orbitals cannot all have exponential localization; ex-
ponential localization is obtained by hybridizing differently
colored orbitals from neighboring layers. (b) Distance dependence

of the hopping elements ln jtR⃗1
0⃗1
j of the TLI with R⃗ ¼ ðx; y; 0Þ for

the system size Nx ¼ Ny ¼ 31, where tR⃗1
0⃗1

is defined below

Eq. (1). We observe an exponential decay of the hopping elements

tR⃗1
0⃗1

in all directions.

FIG. 1. (a) TLI with NTLI ¼ 1 for open boundary conditions
along z direction only: all the bulk states are localized by disorder,
while the two boundary surfaces (orange and blue) host delo-
calized states and have opposite quantized Hall conductance.
(b) The energies Ecð�êzÞ of delocalized states are not constrained
by the bulk. (c) Comparison between TLIs and strong topological
insulators (TIs). (ATI is called strong if its existence does not rely
on translational symmetry.).
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Bulk topological invariantNTLI.—For a bulk Hamiltonian
H, with all eigenstates localized, the unitary U that
diagonalizes H can be chosen such that its matrix elements
are exponentially localized in the basis jR⃗αi

hR⃗0α0jUjR⃗αi ∼ e−γjR⃗−R⃗
0j; ð4Þ

for some positive constant γ. More concretely, we define U
as mapping localized eigenstates jψni of H onto atomic
orbitals jR⃗αi, i.e., UjR⃗αi ¼ jψnðR⃗;αÞi, such that condition

(4) is satisfied. The assignment defined by nðR⃗; αÞ is not
unique [45]. The bulk integer invariant can be expressed as
NTLI ¼ ν½U�,

ν½U� ¼ iπϵijk

3V
TrðU†½X̂i; U�U†½X̂j; U�U†½X̂k; U�Þ; ð5Þ

with V ¼ NxNyNz being the volume of the system and

X̂i ¼
P

R⃗α RijR⃗αihR⃗αj the ith component of the position

operator, i ¼ 1, 2, 3, R⃗ ¼ ðx; y; zÞ, and the summation over
repeated indices is assumed (We note that similar invariant
appears in the anomalous Floquet-Anderson insulator and
its multi-drive generalization [46,47]). The above expres-
sion is guaranteed to take integer values as long as (4) is
satisfied [48]. Note that, for a finite system size, the
commutators ½X̂i; U� need to be approximated, see
Supplemental Material [37]. It can be analytically shown
that NTLI ¼ 1 for the model (1), see Ref. [37].
Expression for the boundary Hall conductance σ∂12.—We

consider a slab geometry with the width much larger than
the localization length. Let us denote the eigenstates of H
that are localized on one of the two surfaces by fjψ surf

n ig,
irrespective of their energy. Since all the bulk states are
localized, some of these states can be safely included in the
set fjψ surf

n ig without affecting the resulting surface Hall
conductance. The Hall conductance of the system when the
states fjψ surf

n ig are filled with electrons is given by the
Chern number [36] σ∂12 ¼ ðe2=hÞCh½Psurf �,

Ch½P� ¼ 2πi
N1N2

TrðP½½X̂1;P�; ½X̂2;P��Þ; ð6Þ

where Psurf ¼ P
n jψ surf

n ihψ surf
n j and X̂1;2 are the two

components of the position operator along the slab.
When the matrix elements of Psurf are exponentially
localized, analogous to condition (4) with Psurf in place
of U, Ch½Psurf � is guaranteed to take integer values [36].
The bulk-boundary correspondence of TLIs takes the

following form:

σ∂12 ¼ NTLI
e2

h
: ð7Þ

We demonstrated that the above relation holds for the model
above Eq. (1), for the z-terminated crystal. Below we

demonstrate numerically that it also holds for the x- and
y-terminated crystals (hard-wall boundary), as well as for a
perturbed version of the model (1). The general proof of
relation (7) for an arbitrary model of a TLI in the same phase
as (1) directly follows, as the surface Hall conductance can
change only if delocalized states move to the surface, which
is forbidden for TLIs in the same phase, as all the states in
the bulk are localized.
The quantized Hall conductance of a TLI’s boundary

comes together with the quantized (isotropic) magneto-
electric polarizability coefficient αME of its bulk. This
follows directly from the arguments presented in Ref. [49]:
when the slab is fully filled with electrons, the electrons are
“inert” and do not respond to an external magnetic field.
Since the boundary has nonzero quantized Hall conduct-
ance, it follows from the Streda theorem [43] that the
filling of the boundary changes by an integer amount
(σ∂12h=e

2) when the flux Φ0 ¼ h=e threads the slab. This
charge needs to be compensated by the bulk; from this
compensation, it follows that the bulk, fully filled with
electrons, has an isotropic and quantized magnetoelectric
polarizability tensor αME ¼ NTLI.
Numerical results.—We perturb the model in Eq. (1) by

including nearest-neighbor hopping that eventually pushes
the TLI into a metallic phase. We define HðλÞ ¼ H þ λH0
with

H0 ¼
X

hR⃗R⃗0iα
ðt1jR⃗0αihR⃗αj þ t2jR⃗0αihR⃗ ᾱ jÞ þ H:c:; ð8Þ

where 1̄ ¼ 2, 2̄ ¼ 1, and hR⃗; R⃗0i denotes summation over
all nearest-neighbor pairs of lattice vectors. Below, we set
t1 ¼ 10t2 ¼ 1, W ¼ 1, and consider a one-parameter fam-
ily of the Hamiltonians HðλÞ, 0 ≤ λ ≤ 1.
We first study the metal-insulator transition using level

spacing statistics. To this end, we compute the average level
spacing ratio [50,51] r ¼ ⟪rniniW around the middle of the
spectrum, where rn ¼ minfsn; snþ1g=maxfsn; snþ1g with
sn ¼ Enþ1 − En ≥ 0 being the level spacing and En,
n ¼ 1;…; 2V, the ordered eigenvalues of HðλÞ. For
λ < λc, r decreases with increasing system size, approach-
ing the value rPE ≈ 0.38 of the Poisson ensemble (PE).
All eigenstates are localized in this regime. For λ > λc, r
increases with increasing system size, approaching the
value rGUE ≈ 0.60 of the Gaussian unitary ensemble
(GUE). The system is in a metallic phase at half-filling
(a mobility edge appears). From this one-parameter scaling,
we find the metal-insulator transition at half filling occurs at
λc ≈ 0.088� 0.002, see Fig. 3(a).
As long as HðλÞ is in the localized phase, the condition

(4) is satisfied and NTLI and σ∂12 are guaranteed to take
integer values for large enough system size [36,48]. In
practice, for the system sizes we consider in Fig. 3, we find
that the quantization of NTLI and σ∂12h=e

2 breaks before the
value of λc is reached. In Fig. 3, we show that the range of λ
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for which NTLI and σ∂12h=e
2 are quantized extends as the

system size is increased, showing the tendency toward the
value λc.
We note that, although the tight-binding model (1) has

exponentially decaying hopping amplitudes (Fig. 2), the
system remains in the same phase for a finite-range
hopping version of this model. We have checked this
explicitly by truncating the exponential tail of the wave
functions jwR⃗αi, i.e., setting CR⃗α

R⃗0α0
¼ 0 for jR⃗ − R⃗0j > Nt.

The results for Nt ¼ 4 are given by dashed curves in
Figs. 3(c) and 3(d), from which one can conclude that the
phase is stable under such truncation, although the trun-
cation increases the localization length as indicated by less
good quantization.
Quantized Hall response.—The quantized response of a

TLI can be probed in the Corbino geometry by adiabatic flux
insertion. Since the TLI’s bulk is fully localized, the
boundary can be doped with electrons independent of the
bulk. The boundary of a TLI, fully filledwith electrons, gives
the same response to flux insertion as a torus-shaped, half
filled, two-dimensional Chern insulator (extrinsic second-
order TI [52]), see Supplemental Material [37]. The main
difference between these two setups is that the response of a
TLI remains quantized under an arbitrarily strong boundary
disorder, whereas a half filled Chern insulator gets trivialized
above certain critical disorder strength [36].

Resonant energy model for a TLI.—In the model defined
in Eq. (1), disorder is introduced in a highly nontrivial way
that is not natural to occur in experimental systems. Here we
suggest an alternative model realization of a TLI can be
obtained by stacking two-dimensional Chern insulators with
generic disorder. We assume that each Chern insulator has
two bands and a band gap Δ or 2Δ (depending on the layer)
that is much larger than the bandwidth. Disorder will
broaden the “bands” to a band with ΔB, but should be
weak enough to maintain ΔB ≪ Δ. There is a single energy
per band [36], where delocalized states appear. We mark
these energies in blue or orange in Fig. 4, depending on the
sign of their quantized Hall conductance. The parameters of
the layers repeat with the period three, and the system is
tuned such that differently colored delocalized states from
neighboring layers are on resonance. When only resonant
interlayer coupling is considered, the model is dimerized,
with each dimer being a fully localized phase since it
belongs to a two-dimensional unitary class and has zero Hall
conductance. Hence, the delocalized states from neighboring
layers “pair annihilate,” leaving only unpaired delocalized
states on the boundary of the resulting three-dimensional
system.We anticipate the localization length (in the xy plane)
of each dimer to be rather large in this model due to
exponential sensitivity of the localization length in two-
dimensional unitary class [53]. The off resonant interlayer
coupling tends to delocalize some bulk states, but we expect
for strong enough disorder and for large enough flatness ratio
Δ=ΔB (see Fig. 4) that the system is in the same phase as the
above-mentioned dimerized limit. The detailed study of the
model is left for future works.
Conclusions.—Topology of tenfold-way (strong) TIs

[2,4,5] poses an obstruction to localization by disorder
of its occupied bulk states [31–33]. Correspondingly,

(a)

(c)

(b)

(d)

FIG. 3. (a) Estimate of λc from mean level spacing ratio r as
function of λ:r is computed over 500 eigenstates in the middle of
the spectrum, considering 103 disorder realizations. (b) The
winding number NTLI is computed for different system sizes
with increasing hopping strength λ, where the quantized plateau
increases with system size for λ < λc. (c) Surface Chern number
for the hard-wall open boundary conditions (OBC) in z direction
as function of λ. (d) Same as (c), for OBC in y direction. No
disorder averaging was performed for the winding and Chern
numbers, apart from the blue curves where average was per-
formed over five disorder realizations, as well as the red curves in
(b) and (c) for λ < λc. The dashed curves in (c) and (d) are for the
finite-range hopping version of the model (1) with Nt ¼ 4, see
the main text.

FIG. 4. Sketch of the layer construction for the three-dimen-
sional TLI. A stack along z direction of two-band disordered
Chern insulators, with the bandwidth ΔB and the gap Δ or 2Δ,
becomes fully localized due to interlayer coupling t such that
ΔB ≪ t ≪ Δ. For each layer, density of states (DOS) is shown,
and the delocalized states depicted in orange (blue) carry a
positive (negative) quantized Hall conductance.

PHYSICAL REVIEW LETTERS 129, 256401 (2022)

256401-4



topological Anderson insulators [35] are Anderson insula-
tors only at certain but not all fillings and the topological
charge is carried by their delocalized bulk states only. Our
main result is finding that fully localized insulators can be
topologically nontrivial, too. In particular, we construct a
three-dimensional model with broken time-reversal sym-
metry, where topology poses an obstruction to localization
of its fully localized bulk states all the way down to the
atomic limit. We find that the three-dimensional fully
localized insulator, with broken time-reversal symmetry,
does not represent a single phase of matter, but rather
contains infinitely many phases that are labeled by integers.
Here, the Anderson model of localization, in the absence of
mobility edge, corresponds to a topologically trivial insu-
lator and is labeled by NTLI ¼ 0, whereas topologically
nontrivial localized insulators are guaranteed to host states
delocalized along the crystal’s insulating boundary that
give rise to the quantized Hall conductance (7) in Corbino
geometry. Crucially, these delocalized boundary states
remain topologically protected in the presence of an
arbitrarily strong boundary disorder. We introduced the
method to construct these novel insulators, which is readily
generalizable to include additional symmetries (e.g., time
reversal). We hope that this Letter will motivate experi-
ments where quantized responses are observed in out-of-
equilibrium settings.
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