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Nanoswimmers are ubiquitous in biotechnology and nanotechnology but are extremely challenging to
measure due to their minute size and driving forces. A simple method is proposed for detecting the elusive
physical features of nanoswimmers by observing how they affect the motion of much larger, easily
traceable particles. Modeling the swimmers as hydrodynamic force dipoles, we find direct, easy-to-
calibrate relations between the observable power spectrum and diffusivity of the tracers and the dynamic
characteristics of the swimmers—their force dipole moment and correlation times.
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Introduction.—In recent years, nanoscale swimmers
attracted much interest as a basic physical phenomenon
with promising potential in biomedical and technological
applications [1–3]. Examples include artificial swimmers,
such as chemically powered nanomotors [2,4–10], biomo-
lecules that exhibit enhanced diffusion [11], and biohybrid
swimmers [1,3,12,13]. Because of their minute size, the
motion of nanoswimmers and microswimmers is deep in
the low-Reynolds regime where viscous forces dominate
over inertia [14–16]. But the swimmers also experience
stochastic forces from the surrounding solvent molecules,
and at the nanoscale, these thermal fluctuations become
comparable to the typical driving forces. Hence, measuring
the properties of nanoswimmers using traditional tech-
niques, such as fluorescence correlation spectroscopy and
dynamic light scattering [5,11,17,18], is extremely diffi-
cult, leaving core questions in the field—particularly,
whether enzymes and small catalysts self-propel—open
and a matter of lively debate [19–26].
An alternative path to characterize nanoswimmers is by

observing how they affect the motion of large, micron-size
particles [27,28], such as silica beads [29], or vesicles [30].
Tracer motion has been extensively investigated in sus-
pensions of microswimmers, especially microbes [31–44]
whose size is comparable to the spherical and ellipsoidal
tracers used. These studies typically report a manyfold
enhancement of the tracers’ diffusion compared to thermal
diffusion [31–38]. Theoretical models that explain the
observed enhancement are based on the hydrodynamic
interactions induced by the swimmers’ motion over long,
persistent trajectories [39–42]. The enhancement is propor-
tional to the volume fraction of swimmers, their self-
propulsion speed [32–34], and geometrical factors, such
as the average run length of the swimmer before it changes
direction [39–42]. Here, thermal fluctuations have a neg-
ligible effect compared to self-propulsion, as indicated by a
manyfold increase in diffusivity.

While similar experimental studies of tracer motion in a
suspension of nanoswimmers are much fewer [27,28], they
suggest a common mechanism of momentum transfer from
swimmers to tracers which may operate at the molecular
scale of organic reactions [19,20,45]. Unlike the motion of
the nanoswimmers, the motion of the microsized tracer
particles is easy to track, for example, by video microscopy,
and one could therefore, in principle, use tracers to probe
the forces generated by the swimmers. But the application
of this potentially advantageous method is hindered by
the lack of understanding and rigorous computation of
the hydrodynamic coupling between nanoswimmers and
tracers.
Here, we present a first-principles theory that addresses

this problem by linking the tracer’s motion to the dynamics
of the swimmer suspension. The theory derives the hydro-
dynamic flow field generated by swimmers, and its effect
on the tracer’s motion, accounting for three physical effects
dominant in the nanoregime: (a) thermal fluctuations—due
to their nanometric size, the swimmers are subjected to
strong thermal forces, giving rise to vigorous stochas-
tic rotation and translation. (b) Stochastic driving—
nanoswimmers are often propelled by strongly fluctuating
chemical reactions, where intermittent activity bursts are
separated by rest periods as, for example, in enzymatic
reactions. (c) Near-field hydrodynamics: a micron-sized
tracer is effectively a large-scale boundary and swimmers
are in the near-field view of the tracer. By computing these
three physical effects (see Model section), we obtain our
main results: simple expressions for the observable force-
force autocorrelation, power spectrum, and diffusivity of
the tracer particles from which one can gauge the nano-
swimmer’s dipole moment and persistence time [particu-
larly, Eqs. (9), (11), and (13)].
In the following, we explain the underlying physical

intuition and main steps of the derivation (whereas the
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details are given in Supplemental Material (SM) [46]). We
then perform a Brownian dynamics simulation of the tracer
motion in the swimmer suspension and compare it with our
analytical findings. Finally, we propose and demonstrate,
using the simulation results, how to use the derived
estimates in experiments, especially as physical bounds
for testing hypothesized self-propulsion mechanisms.
Model.—The swimmer motion is within the highly

viscous regime, at low Reynolds number, and it is force-
free and torque-free. Hence, the leading order contribution
to the flow field of a swimmer is due to the force dipole
[47–50]. Thus, we consider the nanoswimmer suspension
as an ensemble of force dipoles, each consisting of two
equal and opposite point forces (Stokeslets) of strength
f ¼ ff̂, separated by an infinitesimal distance lD ¼ lDê.
The resulting force dipole, which determines the far-field
flow is the tensor mαβ ¼ mêαf̂β, where m ¼ flD is the
dipole’s magnitude. The velocity field induced at a distance
r from the dipole is obtained from the gradient of Gαβ, the
hydrodynamic Green function, vαDðrÞ ¼ mβγ∂γGαβðrÞ. The
Green function, Gαβ ¼ ðδαβ þ r̂αr̂βÞ=ð8πηrÞ, is the mobil-
ity tensor, defined as the flow generated by a Stokeslet of
unit strength. From a physical point of view, it is instructive
to divide the induced velocity vD into symmetric and
antisymmetric parts,

vDðrÞ ¼
½3ðf · r̂ÞðlD · r̂Þ − f · lD�r̂

8πηr2
þ ðf × lDÞ × r̂

8πηr2
: ð1Þ

The first, symmetric contribution, called stresslet, arises
from the straining motion of the dipole when the forces are
parallel to the dipole’s orientation. The second, antisym-
metric term, known as rotlet, corresponds to the rotational
motion of the dipole, arising when the forces and the dipole
are not aligned [51–54].
A tracer subjected to the velocity field vD experiences a

hydrodynamic drag that depends on its size. Tracers are
much larger than the swimmers, move much slower, and
therefore effectively serve as static boundaries. Finding the
flow field near the tracer’s surface generally requires
calculating the image system of the force dipole by a
multipole expansion [49,50,55]. However, one finds that
the force F exerted on a spherical tracer depends only on
the leading-order monopole term, and can be calculated
using Faxén’s law [56,57],

F ¼ 6πμa

�
1þ 1

6
a2∇2

�
vDðrÞ

����
r¼0

; ð2Þ

where a is the radius of the spherical tracer whose center is
at r ¼ 0. We notice that the second term arises from the
large scale of the tracer and becomes negligible when
the tracer size is small compared to its distance from the
swimmer (a ≪ r). Substituting the dipolar velocity field
[Eq. (1)] in Faxén’s law [Eq. (2)], we obtain the force

exerted on the tracer, F ¼ Fstr þ Frot, where the contribu-
tions from the stresslet and rotlet are

Fstr ¼
3am
4r2

½r̂½−ê · f̂þ 3ðê · r̂Þðf̂ · r̂Þ�

þ a2

r2
fr̂½ê · f̂ − 5ðê · r̂Þðf̂ · r̂Þ� þ êðf̂ · r̂Þ þ f̂ðê · r̂Þg�;

Frot ¼
3am
4r2

½f̂ðê · r̂Þ − êðf̂ · r̂Þ�; ð3Þ

and r is the distance between the swimmer and sphere
center with the unit vector r̂.
Consider a suspension consisting of an ensemble of N

force dipoles of strengths fmig located at positions frig
with dipole and force orientations, fêig and ff̂ig. Because
of the linearity of the Stokes flow and the minute size of the
swimmers, one can neglect higher-order terms and multi-
ple-scattering interactions among the dipoles. Within this
approximation, the total force on the tracer is simply a
superposition of the forces exerted by the individual
dipoles,

Ftot ¼
XN
i¼1

ðFðiÞ
str þ FðiÞ

rotÞ; ð4Þ

where FðiÞ
str and F

ðiÞ
rot are the contributions due to stresslet and

rotlet from the ith dipole.
Because of their nanometric size, the dipoles experience

strong stochastic kicks by the solvent molecules and other
noise sources present in the suspension, resulting in two
effects. First, the fluctuations induce diffusive motion, trans-
lational and rotational. The translational diffusivity scales
inversely with the swimmer’s size, D ¼ kBT=ð3πηlDÞ,
whereas rotational diffusion has an inverse cubic dependence,
Dr ¼ kBT=ðπηl3

DÞ. As a result, during a typical rotational
timescale τr ¼ 1=ð2DrÞ, a particle will diffuse to a distance
∼lD while rotating about one radian. Since the separation
between tracers and dipoles is typically much larger than the
dipole size (r ≫ lD), the change in dipole position due to
translational diffusion has a negligible effect on the hydro-
dynamic force it exerts on the tracer [Eq. (3)]. In contrast,
within the same period, a swimmer performs, on average, a
full rotation, thus strongly affecting the force on the tracer.
This stochastic wandering of the orientations ê and f̂ on the
surface of a unit sphere is captured by a rotational diffusion
equation [58–60], fromwhichweobtain probabilitymoments
for orientations that are required for the calculating moments
of the force Ftot (see details in SM [46]).
The second stochastic effect stems from internal fluctu-

ations of the force dipole that vary its magnitude,mðtÞ [61].
Certain force dipoles, particularly those fueled by chemical
cycles, will work in bursts with finite persistence time τc
each stroke. Such swimmers are additionally characterized
by τp, the typical cycle period between strokes, which in
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catalysts is the inverse of the turnover rate. We take for
simplicity, the bursts of duration τc through which the force
dipole is constant, mðtÞ ¼ m. These square bursts occur
on average every τp, and in between the bursts, the force
dipole is idlemðtÞ ¼ 0. The resulting autocorrelation of the
moment is

hmðtÞmð0Þi ¼ m2b½bþ ð1 − bÞe−t=τm �; ð5Þ

where b ¼ τc=τp is the relative fraction of the bursts during
the cycle, and τm ¼ τcð1 − bÞ is the timescale of moment
fluctuations (see SM [46]).
Results.—The fluctuations in the dipoles’ orientation and

moment render the force Ftot stochastic and to calculate its
statistics, we consider an arbitrarily oriented force dipole
with axisymmetric (ê ¼ f̂) and transverse (ê⊥f̂) compo-
nents, f ¼ fkêþ f⊥f̂. For the axisymmetric dipole, only
the stresslet contributes to the total force, whereas for the
transverse dipole both stresslet and rotlet contribute
[Eqs. (3) and (4)]. Thus, the total force can be expressed
as the sum of axisymmetric and transverse components,
FtotðtÞ ¼ ½Ftot

k ðtÞ þ Ftot⊥ ðtÞ]. To find the mean force and its

fluctuations, we average over dipole positions, orientations,
and moments, as detailed in the SM [46]. We find that the
net mean force vanishes, hFtotðtÞi ¼ 0, as expected from
symmetry. Thus, the surviving dominant moment is the
force autocorrelation,

hFtot
α ðtÞFtot

β ð0Þi ¼ δαβ
2π

5
c0am2

sb½be−
3t
τr þ ð1 − bÞe− t

τs �; ð6Þ

where the Greek indices denote hereafter Cartesian com-
ponents and c0 ¼ hPi δðr − riÞi is average concentration
of dipoles. m2

s ≡m2
k þ 2m2⊥, is the effective squared

momentum of the swimmer with the axisymmetric and
transverse contributions, mk ¼ fklD and m⊥ ¼ f⊥lD, and
the effective timescale of the swimmer τs is the harmonic
mean of the timescales of rotational motion and dipole-
moment fluctuations, τ−1s ¼ τ−1m þ 3τ−1r .
A chief measurable quantity is the diffusion coefficient

for the tracer, which is computed using the Green-Kubo
relation [62,63],

Dtr
αβ ¼

1

γ2

Z
∞

0

hFtot
α ðtÞFtot

β ð0Þidt; ð7Þ

where γ ¼ 6πηa is the friction coefficient of the spherical
tracer, and η is the viscosity of the suspension. Substituting
the autocorrelation from Eq. (6) into the Green-Kubo
relation, we obtain the isotropic diffusivity,

Dtr
αβ ¼

δαβ
90π

c0m2
sτeff

η2a
; ð8Þ

where the timescale τeff ¼ 1
3
b2τr þ bð1 − bÞτs is the linear

combination of the timescales τr and τs. We see that similar
to the thermal diffusivity of the tracer Dth ¼ kBT=γ ¼
kBT=ð6πηaÞ, suspension-induced diffusion is also inver-
sely proportional to its size, allowing us to define size-
independent relative enhancement,

E ¼ Dtr
αα

Dth
¼ c0m2

sτeff
15ηkBT

: ð9Þ

Another experimentally measurable quantity is the
power spectrum of force for tracer SFðωÞ, the Fourier
transform of the force autocorrelation, which measures the
frequency-dependent response of the hydrodynamic force
Ftot
α ðtÞ,

SFðωÞ ¼
Z

∞

−∞
eiωthFtot

α ðtÞFtot
α ð0Þidt: ð10Þ

From Eq. (6), we find that the power spectrum is a sum of
two Lorentzians,

SFðωÞ ¼
4π

5
c0am2

sb

�
b

1
3
τr

ω2ð1
3
τrÞ2 þ 1

þ ð1 − bÞ τs
ω2τ2s þ 1

�
:

ð11Þ

The Lorentzians merge in the limit of fast rotation, τr ≪ τm,
typical to nanoswimmers, or when the swimmer self-
propels continuously (b ¼ 1). The Fourier transform of
the tracer displacement, RðωÞ ¼ R

∞
−∞ eiωtRðtÞdt, is con-

nected to the power spectrum SFðωÞ via a fluctuation-
dissipation relation,

hjRðωÞj2i ¼ jχðωÞj2½SFðωÞ þ STðωÞ�; ð12Þ

where STðωÞ ¼ 2γkBT is the power spectrum of thermal
fluctuations and χðωÞ is the response function, which is
χðωÞ ¼ ðiγωÞ−1 ¼ ð6iπηaωÞ−1 for a spherical tracer in a
Newtonian fluid.
Numerical simulation.—To verify our analytical findings

and demonstrate how they can be used in experiments, we
consider a numerical realization where dipoles are ran-
domly distributed in a cubic box with a tracer particle
initially located at the box’s center. The dipoles undergo
rotational and translational Brownian motion, and their
dynamics are modeled using the standard Langevin’s
framework. For clarity, we chose physical units where
energy, length, and time are measured in the unit of thermal
energy (kBT), dipole length (lD), and the rotational time-
scale (τr), respectively. The hydrodynamic interactions
between dipoles and the tracer are calculated using
Eq. (2). Fluctuations in the dipole moments due to reaction
stochasticity are modeled as the two-state Markov process
with the parameters ms ¼ 10, τc ¼ 0.1, and τp ¼ 0.2.

PHYSICAL REVIEW LETTERS 129, 254502 (2022)

254502-3



Thus, the relative fraction of bursts is b ¼ 0.5, and the
effective timescale of moment fluctuations is τs ¼ 0.0435
(see SM for more details).
During the simulation, we recorded the tracer’s trajectory

RðtÞ, as one would typically measure in an experiment
[Fig. 1(a)]. We also recorded, independently, the total force
exerted on the tracer by the nanoswimmer suspension as a
function of time, FtotðtÞ. By averaging over an ensemble of
trajectories, we can calculate the diffusion coefficient of the
tracer, Dtr ¼ hjRðtÞj2i=ð6tÞ, and the force power spectrum
SFðωÞ [from Eq. (12)], which we verify against the power
spectrum computed directly from Ftot

α ðtÞ [Fig. 1(b)]. In the
graph of SFðωÞ, one can easily notice two timescales of
decay corresponding to the rotational diffusion and
moment fluctuations. Taking into account finite-size effects
(see details in SM), the power spectrum of the force, and
diffusion coefficient of the tracer show excellent agreement
with the numerical results (Fig. 1).
We extract the properties of an individual dipole by

fitting the numerical data for the force power spectrum with
Eqs. (11), corrected for the finite size effect. This provides
us the values of average dipole moment msb ¼ 5.560�
0.005, and of timescales τr ¼ 0.98� 0.001 and τs ¼
0.042� 0.0002. Thus, the timescale of momentum fluc-
tuation τm can be estimated using τ−1s ¼ τ−1m þ 3τ−1r , which
yields τm ¼ 0.049. Likewise, fitting of the diffusion coef-
ficient data using Eq. (13) provides an estimate of the
timescale ratio, τeff=τr ¼ 1

3
b2 þ bð1 − bÞðτs=τrÞ. Now,

using the values of τr and τs extracted from the power
spectrum fit, we obtain the relative fraction of bursts, b≈
0.53, the Markov process timescales, τc ¼ τm=ð1 − bÞ≈
0.1, τp ¼ τc=b ≈ 0.2, and the dipole moment, ms ≈ 10.5—
all in agreement with the simulation parameters. This
demonstrates how, in principle, the measurement of tracer
trajectories allows the complete determination of the
properties of an individual nanoswimmer. The above

example represents the regime of τm ≪ τr or τm ≈ τr.
We also simulated the complementary regime τm ≫ τr,
where the decay mode due to the moment fluctuations is
masked by the rotational mode (τs ≈ τr), but one can still
extract the swimmer properties, particularly ms, τr, and
b ¼ τc=τp.
Physical interpretation and potential experimental

use.—The long-range hydrodynamic interactions link the
motility of the tracer to the dynamics of an individual
swimmer through simple testable relations [particularly,
Eqs. (9) and (11)]. Thus, it bypasses the challenges of
directly probing the nanometric objects and instead relies
on the much easier measurement of larger objects using
standard techniques. Within the superposition approxima-
tion [Eq. (4)], the relative enhancement is independent of
properties of the passive tracers, especially their size a (as
long as they are spherical), but only reflects the specifi-
cations of the active swimmers.
To gain further insight, consider a solution of roughly

spherical swimmers of diameter lD. Substituting the
volume fraction of the swimmers, Φ ¼ ðπ=6Þc0l3

D,
and their rotational diffusion time, τr ¼ πηl3

D=ð2kBTÞ,
into Eq. (9), we obtain an intuitive expression for the
enhancement,

E ¼ 1

5
Φ

m2
s

ðkBTÞ2
τeff
τr

: ð13Þ

Thus, the enhancement is proportional to the product of the
volume fraction of swimmers and their squared momentum
measured in kBT units. The timescale ratio, τeff=τr ¼
1
3
b2 þ bð1 − bÞðτs=τrÞ, has two asymptotic limits: in the

regime of fast rotation, τm ≫ τr, corresponding to small
swimmers, the ratio is τeff=τr ¼ 1

3
b. In the other extreme of

large, slowly rotating swimmers, τm ≪ τr, the ratio be-
comes τeff=τr ¼ 1

3
b2. In the case of continuous propulsion

(a) (b) (c)

FIG. 1. Numerical realization of tracer dynamics in a nanoswimmer suspension. (a) A tracer trajectory RðtÞ ¼ ½XðtÞ; YðtÞ; ZðtÞ� in a
typical simulation. (b) Force power spectrum SFðωÞ computed by averaging over tracer trajectories (see text). Blue stars are the
numerical data, and the yellow line is the fit to the analytic expression in Eq. (11), for volume fraction of swimmers Φ ¼ 0.013. (c) The
variation of the relative enhancement of the diffusion E (blue stars) with the volume fraction of the swimmers Φ. Using the analytic
model [Eqs. (11) and (12)] we extracted from the trajectories the values of the nanoswimmer parameters, which agree with the
simulation parameters (see text).
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b ¼ 1, these asymptotic limits coalesce. For nonspherical
swimmers, such as elongated swimmers in the shape of a
prolate spheroid, Eq. (8) needs to be augmented by a
geometric factor.
The present results propose a straightforward recipe for

probing biological or artificial nanoswimmers by observing
the motility of large tracers using standard experimental
techniques, such as confocal microscopy or optical twee-
zers [64,65]. From the observed positional data RðtÞ one
can simply extract the mean square displacement hjRðtÞj2i
and the resulting enhancement of the diffusivity, Eexp ¼
ΔD=Dth ¼ hjRðtÞj2i=ð6DthtÞ − 1. Then, using either of
Eqs. (9), (13), the measured Eexp is directly related to
the product of the squared dipole moment of the swimmers
(in kBT units) and their volume fraction. This relative
enhancement can also be detected as the relative widening
of the probability distribution of a laser-trapped particle,
expressed as the ratio of the variances, Eexp ¼ σ2=σ2th − 1.
Since the enhancement E does not depend on the size of the
spherical tracer [e.g., Eq. (13)], it can be calibrated using a
series of tracers of various diameters.
Another route to probing the nanoswimmer dynamics is

through the power spectrum SFðωÞ. Using the fluctuation-
dissipation relation [Eq. (12)], one can extract the power
spectrum of the force fluctuations from the spectrum of
tracer position, SexpF ðωÞ ¼ hjRðωÞj2i=jχðωÞj2 − STðωÞ.
This experimental spectrum can then be compared to the
theoretical double Lorentzian form [Eq. (11)]. In principle,
this would allow the extraction of the dipole moment and
the timescales associated with rotational and moment
fluctuation of the swimmers, as demonstrated above in
the numerical simulation. The same procedure can be
applied to trapped particles, with a modified response
function χðωÞ ¼ ðiγωþ κÞ−1, where κ is the effective
spring constant of the trap.
As an example of potential use in experiments, we

examine the diffusivity of tracers immersed in an enzyma-
tic suspension. Within the hypothesis that enzymes are
active nanoswimmers [11], we assume that they exert
dipole moment bursts of average duration τc during the
catalytic cycle, which are intermitted by idle periods of
average duration τp − τc, where τp is the average period
of the enzymatic cycle. The Michaelis-Menten catalysis
rate is 1=τp ¼ kcatcs=ðKm þ csÞ, where cs is the sub-
strate concentration, Km is the Michaelis constant, and
kcat is the maximal turnover rate. Thus, we find that
the relative fraction of bursting time is b ¼ τc=τp ¼
ðτckcatÞ cs=ðKm þ csÞ, reaching a maximum bmax ¼
τckcat at saturation. Because of their size, the enzymatic
nanoswimmers are in the fast rotation regime τr ≪ τm,
where the relative enhancement is linear in b, and thereby
follows the Michaelis-Menten saturation curve as a
function of substrate concentration cs, as observed in
experiments [27].

Considering a suspension of enzymes whose dipole
moment isms ≈ 10kBT, where the typical distance between
neighboring enzymes is about tenfold their size, Φ ≈ 10−3,
we find modest enhancement of tracer diffusion, E ≈ 1%
(for b ¼ 1). However, the enhancement increases as the
moment squared, E ∼Φm2

s , so one expects a much more
significant effect for larger, stronger swimmers (at the same
volume fraction Φ), for example, in artificial nano-
swimmers, such as Au-Pt Janus particles [28]. At the other
extreme, of molecular catalysts [19,20], we still expect
measurable effects on tracers in dense reactant solutions.
On the other hand, observation of enhanced diffusion at
much lower swimmer concentrations may indicate stronger
force dipoles. One tentative speculation is that such strong
forces arise when momentum and energy are channeled
from electronic degrees of freedom of the reactants, which
are fast and localized, to slow, collective modes of
surrounding solvent molecules and ions [11]. Similar
collective effects are expected to show in the diffusivity
of the nanoswimmers themselves. For example, the dif-
fusivity of Janus particles should slightly increase with their
concentration, beyond the self-enhanced diffusion of an
isolated nanoswimmer. This hypothesis may also be tested
in enzyme solutions, where we speculate that such long-
range hydrodynamic interactions may also accelerate
enzymatic kinetics by affecting the crossing rate of energy
barriers [66].
The simplicity of our model allows a straightforward

generalization to multicomponent systems. However, the
present model does not account for hydrodynamic inter-
actions between the swimmers, which becomes significant
in a dense suspension. Recent studies of tracer diffusion in
a microswimmer suspension showed that the strong hydro-
dynamic forces induce correlations among the swimmers,
leading to even faster diffusion of the tracer, which
increases nonlinearly with the swimmer concentration
[35,36]. Furthermore, anisotropic tracers exhibit more
complex dynamics due to the coupling of their translational
and rotational motions [35,37].
In summary, the present study provides simple, easy-to-

calibrate relations between the motility of large tracer
particles and the physical properties of a single nano-
swimmer, specifically its dipole moment, and dynamical
timescales. Knowledge of the physical characteristics of
swimmers in these complex environments will be valu-
able in technological applications of nanomachines, for
example, in facilitating drug delivery [3–5].
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